Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2021

Supporting Information

Pb_{2.28}Ba_{1.72}B₁₀O₁₉ Featuring Three-dimensional B-O Anionic Network with Edge-Sharing [BO₄] Obtained under Ambient Pressure

Siru Guo,^{a,b} Wenbin Zhang,^{a,b} Rong Yang,^{a,b} Min Zhang,^{a,b,*} Zhihua Yang,^{a,b} and Shilie Pan^{a,b,*}

^a CAS Key Laboratory of Functional Materials and Devices for Special Environments; Xinjiang Technical Institute of Physics & Chemistry, CAS; Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China

^b Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

*Corresponding authors, E-mails: zhangmin@ ms.xjb.ac.cn (Min Zhang);

slpan@ms.xjb.ac.cn (Shilie Pan).

Empirical formula	$Pb_{2.28}Ba_{1.72}B_{10}O_{19}$			
Temperature	297(2) K			
Crystal system, space group	Monoclinic, $C2/c$			
Unit cell dimensions	a = 11.912(8) Å			
	$b = 6.616(5) \text{ Å}, \beta = 99.406(3)^{\circ}$			
	c = 18.238(10) Å			
Volume	1418.0(16) Å ³			
Z, Calculated density	4, 5.250 Mg/m ³			
Absorption coefficient	31.823 mm ⁻¹			
F (000)	1941			
Crystal size	$0.104 \times 0.069 \times 0.047 \text{ mm}^3$			
Theta range for data collection	2.264 to 27.506°			
Limiting indices	$-15 \le h \le 15, -7 \le k \le 8, -23 \le l \le 23$			
Reflections collected / unique	6639 / 1619 [<i>R</i> (int) = 0.0828]			
Completeness to theta = 27.506°	99.70 %			
Goodness-of-fit on F^2	1.023			
Final <i>R</i> indices $[F_o^2 > 2\sigma(F_o^2)]^{[a]}$	$R_1 = 0.0329, wR_2 = 0.0541$			
<i>R</i> indices (all data) ^[a]	$R_1 = 0.0470, wR_2 = 0.0585$			
Largest diff. peak and hole	1.806 and -1.637 e·Å ⁻³			
$ [a]R_1 = \Sigma F_o - F_c / \Sigma F_o \text{ and } wR_2 = [\Sigma w (F_o^2 - F_c^2)^2 / \Sigma w F_o^4]^{1/2} \text{ for } F_o^2 > 2\sigma (F_o^2) $				

Table S1. Crystallographic data for $Pb_{2.28}Ba_{1.72}B_{10}O_{19}$.

0	-1							
Atoms	x	у	z	U _{eq} (Å ²)	S.O.F.	BV	/ S	
Pb(1)	0.5881(1)	1.2825(1)	0.4888(1)	0.010(1)	1	2.19		
Ba(1A)	0.3006(1)	-0.1107(1)	0.6919(1)	0.010(1)	0.86	2.51	2 20	
Pb(1A)	0.3006(1)	-0.1107(1)	0.6919(1)	0.010(1)	0.14	1.58	2.38	
B(1)	0.3409(12)	0.3370(20)	0.6267(7)	0.009(3)	1	2.98		
B(2)	0.6286(11)	0.8890(20)	0.6261(7)	0.008(3)	1	3.03		
B(3)	0.7057(11)	0.8960(20)	0.4989(7)	0.007(2)	1	2.93		
B(4)	0.5406(11)	0.2270(20)	0.6669(7)	0.008(3)	1	3.0	3.02	
B(5)	0.4975(11)	0.5990(20)	0.6758(7)	0.006(2)	1	3.05		
O(1)	0.3823(6)	0.5448(12)	0.6386(4)	0.006(1)	1	2.07		
O(2)	0.5000	0.6847(17)	0.7500	0.006(2)	1	2.10		
O(3)	0.2377(7)	0.2922(12)	0.6573(4)	0.006(2)	1	1.96		
O(4)	0.8157(6)	0.8099(12)	0.5424(4)	0.006(2)	1	1.97		
O(5)	0.6237(7)	0.9417(13)	0.5476(4)	0.009(2)	1	2.04		
O(6)	0.5767(7)	0.4250(13)	0.6775(4)	0.009(2)	1	2.08		
O(7)	0.6248(7)	0.0858(13)	0.6683(4)	0.010(2)	1	2.06		
O(8)	0.4278(7)	0.1856(13)	0.6551(4)	0.012(2)	1	2.22		
O(9)	0.7192(7)	0.10680(14)	0.4546(4)	0.008(2)	1	2.20		
O(10)	0.5311(7)	0.7619(13)	0.6298(4)	0.008(1)	1	2.05		

Table S2. Atomic coordinates and equivalent isotropic displacement parameters (Å²) and BVS for $Pb_{2.28}Ba_{1.72}B_{10}O_{19}$. U_(eq) is defined as one third of the trace of the orthogonalized U_{ii} tensor.

Bond lengths				
Pb(1)-O(9)	2.271(8)	B(1)-O(8)	1.472(17)	
Pb(1)-O(10)#1	2.404(8)	B(1)-O(4)#6	1.528(15)	
Pb(1)-O(5)	2.503(8)	B(2)-O(10)	1.443(16)	
Pb(1)-O(9)#2	2.557(8)	B(2)-O(5)	1.465(15)	
Pb(1)-O(1)#1	2.663(8)	B(2)-O(3)#10	1.476(15)	
Pb(1)-O(5)#1	2.904(6)	B(2)-O(7)#11	1.519(16)	
Pb(1)-O(4)#2	3.020(8)	B(3)-O(9)	1.421(15)	
Ba/Pb(1A)-O(8)	2.631(9)	B(3)-O(5)	1.456(14)	
Ba/Pb(1A)-O(6)#6	2.648(8)	B(3)-O(4)	1.526(14)	
Ba/Pb(1A)-O(9)#4	2.658(7)	B(3)-O(4)#12	1.556(15)	
Ba/Pb(1A)-O(1)#7	2.719(8)	B(4)-O(8)	1.353(16)	
Ba/Pb(1A)-O(2)#7	2.788(6)	B(4)-O(7)	1.368(16)	
Ba/Pb(1A)-O(3)	2.813(8)	B(4)-O(6)	1.383(15)	
Ba/Pb(1A)-O(7)#8	2.870(8)	B(5)-O(10)	1.461(15)	
Ba/Pb(1A)-O(7)#6	2.883(8)	B(5)-O(2)	1.464(13)	
Ba/Pb(1A)-O(3)#9	2.932(7)	B(5)-O(1)	1.473(14)	
B(1)-O(3)	1.460(16)	B(5)-O(6)	1.485(15)	
B(1)-O(1)	1.466(16)			
	Bo	nd angles		
O(9)-Pb(1)-O(10)#1	90.5(3)	O(6)#6- Ba/Pb(1A)-O(9)#4	88.2(2)	
O(9)-Pb(1)-O(5)#1	103.2(3)	O(8)- Ba/Pb(1A)-O(1)#7	106.2(3)	
O(9)-Pb(1)-O(5)	58.6(3)	O(6)#6- Ba/Pb(1A)-O(1)#7	116.9(2)	
O(10)#1-Pb(1)-O(5)	108.0(3)	O(9)#4- Ba/Pb(1A)-O(1)#7	73.0(2)	
O(10)#1-Pb(1)-O(5)#1	50.9(2)	O(8)- Ba/Pb(1A)-O(2)#7	88.2(3)	
O(10)#1-Pb(1)-O(4)	97.3(2)	O(6)#6- Ba/Pb(1A)-O(2)#7	149.6(2)	
O(9)-Pb(1)-O(9)#2	75.0(3)	O(9)#4- Ba/Pb(1A)-O(2)#7	111.34(18)	
O(10)#1-Pb(1)-O(9)#2	140.4(3)	O(1)#7- Ba/Pb(1A)-O(2)#7	52.9(2)	
O(5)-Pb(1)-O(5)#2	73.6(3)	O(8)- Ba/Pb(1A)-O(3)	51.7(2)	
O(5)-Pb(1)-O(9)#2	95.6(3)	O(6)#6- Ba/Pb(1A)-O(3)	70.5(2)	
O(9)-Pb(1)-O(4)	102.0(3)	O(9)#4- Ba/Pb(1A)-O(3)	72.4(2)	
O(9)-Pb(1)-O(1)#1	80.4(3)	O(1)#7- Ba/Pb(1A)-O(3)	144.3(2)	
O(10)#1-Pb(1)-O(1)#1	53.9(3)	O(2)#7- Ba/Pb(1A)-O(3)	136.4(3)	
O(5)-Pb(1)-O(4)	147.4(2)	O(8)- Ba/Pb(1A)-O(7)#8	77.4(2)	
O(5)-Pb(1)-O(1)#1	136.3(3)	O(6)#6- Ba/Pb(1A)-O(7)#8	102.0(2)	
O(9)#2-Pb(1)-O(1)#1	87.0(2)	O(3)-B(1)-O(1)	114.7(10)	
O(9)#2-Pb(1)-O(4)	52.2(2)	O(3)-B(1)-O(8)	108.4(10)	
O(5)#1-Pb(1)-O(1)#1	104.7(2)	O(1)-B(1)-O(8)	112.7(10)	
O(5)#1-Pb(1)-O(9)#2	167.8(3)	O(3)-B(1)-O(4)#6	108.7(9)	
O(5)#1-Pb(1)-O(4)	138.9(2)	O(1)-B(1)-O(4)#6	105.3(10)	
O(1)#1-Pb(1)-O(4)	49.0(2)	O(8)-B(1)-O(4)#6	106.6(10)	

Table S3. Selected bond lengths (Å) and angles (°) for Pb_{2.28}Ba_{1.72}B₁₀O₁₉.

O(9)#4- Ba/Pb(1A)-O(7)#8	143.9(3)	O(10)-B(2)-O(5)	106.3(9)
O(1)#7- Ba/Pb(1A)-O(7)#8	128.3(2)	O(10)-B(2)-O(3)#10	113.3(11)
O(2)#7- Ba/Pb(1A)-O(7)#8	76.2(2)	O(5)-B(2)-O(3)#10	111.8(10)
O(3)- Ba/Pb(1A)-O(7)#8	78.6(2)	O(10)-B(2)-O(7)#11	112.6(10)
O(8)- Ba/Pb(1A)-O(7)#6	156.3(2)	O(5)-B(2)-O(7)#11	106.9(10)
O(6)#6- Ba/Pb(1A)-O(7)#6	49.6(2)	O(3)#10-B(2)-O(7)#11	105.9(9)
O(9)#4- Ba/Pb(1A)-O(7)#6	88.9(2)	O(9)-B(3)-O(5)	109.2(10)
O(1)#7- Ba/Pb(1A)-O(7)#6	69.9(2)	O(9)-B(3)-O(4)	115.3(10)
O(2)#7- Ba/Pb(1A)-O(7)#6	105.8(3)	O(5)-B(3)-O(4)	111.4(9)
O(3)- Ba/Pb(1A)-O(7)#6	117.8(2)	O(9)-B(3)-O(4)#12	116.8(9)
O(7)#8- Ba/Pb(1A)-O(7)#6	124.05(14)	O(5)-B(3)-O(4)#12	113.9(9)
O(8)- Ba/Pb(1A)-O(3)#9	125.9(2)	O(4)-B(3)-O(4)#12	89.1(8)
O(6)#6- Ba/Pb(1A)-O(3)#9	78.7(2)	O(8)-B(4)-O(7)	124.8(12)
O(9)#4- Ba/Pb(1A)-O(3)#9	164.6(2)	O(8)-B(4)-O(6)	119.5(11)
O(1)#7- Ba/Pb(1A)-O(3)#9	105.8(2)	O(7)-B(4)-O(6)	115.7(11)
O(2)#7- Ba/Pb(1A)-O(3)#9	77.92(16)	O(10)-B(5)-O(2)	106.2(10)
O(3)- Ba/Pb(1A)-O(3)#9	110.0(2)	O(10)-B(5)-O(1)	103.7(9)
O(7)#8- Ba/Pb(1A)-O(3)#9	48.6(2)	O(2)-B(5)-O(1)	113.4(9)
O(7)#6- Ba/Pb(1A)-O(3)#9	76.5(2)	O(10)-B(5)-O(6)	110.6(10)
O(8)- Ba/Pb(1A)-O(6)#6	121.4(3)	O(2)-B(5)-O(6)	111.3(9)
O(8)- Ba/Pb(1A)-O(9)#4	68.0(2)	O(1)-B(5)-O(6)	111.3(9)

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y+2,-z+1 #2 -x+3/2,-y+5/2,-z+1 #3 -x+1,-y+3,-z+1 #4 -x+1,-y+1,-z+1 #5 x+1/2,y+3/2,z #6 x-1/2,y-1/2,z #7 x,y-1,z #8 -x+1,y,-z+3/2 #9 -x+1/2,y-1/2,-z+3/2 #10 x+1/2,y+1/2,z #11 x,y+1,z #12 -x+3/2,-y+3/2,-z+1 #13 -x+1,y+1,-z+3/2 #14 -x+1/2,y+1/2,-z+3/2

		Inside	Outside	В·····В		
	Compounds	O – B – O	O – B – O	interatomic	A/B	Synthesis conditions
		angles (°)	angles (°)	distance (Å		
)		
	$Ba_4Na_2Zn_4(B_3O_6)_2(B_{12}O_{24})$	95.482	111.565	2.000	0.56	Ambient pressure
	Li ₄ Na ₂ CsB ₇ O ₁₄	94.621	110.599	2.026	1.00	Ambient pressure
0 D	BaAlBO ₄	94.062	110.944	2.098	2.00	Ambient pressure
	KZnB ₃ O ₆	92.013	113.972	2.079	0.67	Ambient pressure
	LT-K ₃ Sb ₄ BO ₁₃	86.833	110.9	2.288	7.00	Ambient pressure (crystallize at 200 K)
3 D	Pb _{2.28} Ba _{1.72} B ₁₀ O ₁₉	89.066	109.299	2.199	0.40	Ambient pressure
	Ho ₄ B ₆ O ₁₅	94.375	109.722	2.071	0.67	8 GPa, 1000 °C
	HP-NiB ₂ O ₄	93.559	114.688	2.086	0.50	7.5 GPa, 680 °C
	β -FeB ₂ O ₄	93.359	113.835	2.083	0.50	8 GPa, 1030 °C
2 D	HP-CoB ₂ O ₄	93.305	114.179	2.090	0.50	6.5 GPa, 950 °C
	Dy4B6O15	92.959	109.490	2.098	0.67	8 GPa, 1000 °C
	La ₃ B ₆ O ₁₃ (OH)-B3	92.720	112.613	2.077	0.50	6 GPa, 1400 °C
	La ₃ B ₆ O ₁₃ (OH)-B6	92.559	113.266	2.077		
	β -CsB ₉ O ₁₄	89.272	114.877	2.169	0.11	Vacuum sealed
	α -Ho ₂ B ₄ O ₉	94.270	114.184	2.040	0.50	10 GPa, 1050 °C
	α -Gd ₂ B ₄ O ₉	93.971	113.592	2.034	0.50	10 GPa, 1150 °C
	α -Eu ₂ B ₄ O ₉	93.627	113.499	2.054	0.50	10 GPa, 1150 °C
	α -Tb ₂ B ₄ O ₉	93.150	114.275	2.059	0.50	10 GPa, 1150 °C
	α -Sm ₂ B ₄ O ₉	92.730	113.614	2.071	0.50	7.5 GPa, 1050 °C
	Co ₇ B ₂₄ O ₄₂ (OH) ₂ ·2H ₂ O	90.613	110.891	2.148	0.29	6 GPa, 880 °C
3 D	α-Ba ₃ [B ₁₀ O ₁₇ (OH) ₂]	89.966	115.207	2.169	0.30	1000 bar, 500 °C
	HP-CsB ₅ O ₈	88.798	115.745	2.182	0.20	6 GPa, 900 °C
	HP-KB ₃ O ₅	87.349	114.838	2.215	0.33	3 GPa, 600 °C
	HP-TlB ₃ O ₅	87.175	113.890	2.211	0.33	6 GPa, 1400 °C
	HP-(NH ₄)B ₃ O ₅	87.070	113.806	2.215	0.33	3 GPa, 600 °C
	HP-RbB ₃ O ₅	86.781	113.942	2.231	0.33	6 GPa, 1000 °C

Table S4. The geometric features and synthesis conditions of the edge-sharing [BO₄] in previously reported borates.

Compounds		Space	FBBs	B-O
		Group		configurations
	$Cu_{15}(B_2O_5)_2(BO_3)_6O_2$	$P\overline{1}$	BO ₃ +B ₂ O ₅	0D
	$Ba_2(B_{10}O_{17})$	$P\overline{1}$	B ₁₀ O ₂₃	3D
	$La_4B_{10}O_{21}$	$P2_1/n$	B ₁₀ O ₂₆	3D
Ternary	$Pr_4(B_{10}O_{21})$	$P2_1/n$	B ₁₀ O ₂₆	3D
	$Pb_6B_{10}O_{21}$	$P\overline{1}$	B ₁₀ O ₂₁	0D
	δ - CsB ₅ O ₈	Pccn	B ₁₀ O ₁₉	3D
	$Cs_2Na_2(B_{10}O_{17})$	C2/c	B ₁₀ O ₂₁	2D
	$Cs_2K_2(B_{10}O_{17})$	C2/c	B ₁₀ O ₂₁	2D
	$Na_2Tl_2(B_{10}O_{17})$	C2/c	B ₁₀ O ₂₁	2D
	$Pb_4Zn_2B_{10}O_{21}$	Pbcn	B ₁₀ O ₂₄	2D
Quaternary	$Ba_3B_{10}O_{17}Br_2$	C2/c	B ₅ O ₁₁	2D
	$Ca_{2}B_{10}O_{14}F_{6}$	$Cmc2_1$	B ₅ O ₉ F ₃	2D
	$Sr_2B_{10}O_{14}F_6$	$Cmc2_1$	B ₅ O ₉ F ₃	2D
	La ₂ CaB ₁₀ O ₁₉	C2	B ₅ O ₁₂	2D
	$Li_2Sr_4B_{12}O_{23}$	$P2_{1}/c$	B ₁₀ O ₁₈ +B ₂ O ₅	3D
Hexameric	$NaBa_4B_{10}O_{18}BrF_2$	$P2_1/n$	B ₅ O ₁₂	3D
	Cd ₃ LiNa ₄ Be ₄ B ₁₀ O ₂₄ F	R ₃ H	B ₁₂ O ₂₄ +BO ₃	0D
Heptameric	Sr ₃ LiNa ₄ Be ₄ B ₁₀ O ₂₄ F	R3H	B ₁₂ O ₂₄ +BO ₃	0D
	Ca ₃ Na ₄ LiBe ₄ B ₁₀ O ₂₄ F	R ₃ H	B ₁₂ O ₂₄ +BO ₃	0D
	Li ₄ NaKAl ₄ Be ₃ B ₁₀ O ₂₇	P43m	(B/Be) ₃ O ₉	3D

Table S5. The molecular formulas or FBBs contain ten boron atoms in anhydrous borates.

Figure S1. The B-O configurations in $Pb_4Zn_2B_{10}O_{21}$ and $Pb_{2.28}Ba_{1.72}B_{10}O_{19}$. (a) [B₁₀O₂₄] FBB; (b) ${}^{2}_{\infty}$ [B₁₀O₂₁] layers in $Pb_4Zn_2B_{10}O_{21}$. (c) [B₁₀O₂₄] FBB; (d) ${}^{3}_{\infty}$ [B₁₀O₁₉] network in $Pb_{2.28}Ba_{1.72}B_{10}O_{19}$.

Figure S2. The UV-vis-NIR diffuse reflectance spectrum of Pb_{2.28}Ba_{1.72}B₁₀O₁₉.

Figure S3. The TG-DSC curves of Pb_{2.28}Ba_{1.72}B₁₀O₁₉.

Figure S4. The powder X-ray diffraction patterns of Pb_{2.28}Ba_{1.72}B₁₀O₁₉.

Figure S5. The electronic band structure of the model of $Pb_{2.28}Ba_{1.72}B_{10}O_{19}$.

Figure S6. The calculated birefringence of the model of $Pb_{2.28}Ba_{1.72}B_{10}O_{19}$.