Supporting Information

Non-traditional thermal behavior of Co(II) coordination networks showing slow magnetic relaxation

Anna Świtlicka^{a*}, Barbara Machura^a, Alina Bieńko^{b*}, Sandra Kozieł ^b, Dariusz C. Bieńko^c, Cyril Rajnák^d, Roman Boča^d, Andrew Ozarowski^e and Mykhaylo Ozerov^e

^a Department of Crystallography, Institute of Chemistry, University of Silesia, 9th Szkolna St., 40-006 Katowice, Poland, E-mail: <u>anna.switlicka@us.edu.pl</u>

^bFaculty of Chemistry, University of Wroclaw, 14 F. Joliot-Curie, 50-383 Wroclaw, Poland, E-mail: <u>alina.bienko@chem.uni.wroc.pl</u>

^c Faculty of Chemistry, Wroclaw University of Technology, Wybrzeze Wyspiańskiego 27, 50-370 Wroclaw, Poland

^d Department of Chemistry, Faculty of Natural Sciences, University of SS Cyril and Methodius, 91701 Trnava, Slovakia

^e National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States

Compounds under study

1, $[Co(5,6-(Me)_2-bzim)_2(dca)_2]_n$, $C_{22}H_{20}N_{10}Co$ (M = 483.41 g mol⁻¹), CCDC 2085569

2, $[Co(5-Mebzim)_2(dca)_2]_n$, $C_{20}H_{22}N_{10}Co$ (M = 461.40 g mol⁻¹), CCDC 2085570

3, $[Co(2-Mebzim)(dca)_2]_n$, $C_{20}H_{16}N_{10}Co$ (M = 455.36 g mol⁻¹), CCDC 2085571

S	upporting Information1
1	Synthesis and characterization
	Figure S1. The powder XPRD pattern of 1 4
	Figure S2.The powder XPRD pattern of 2.
	Figure S3. The powder XPRD pattern of 3 4
	Figure S7. UV/Vis spectra of 1–36
	Table S1. Electronic spectral data for 1–3
2	X-Ray structure data
	Table S2. Bond lengths [Å] and angles [°] in 17
	Table S3. Bond lengths [Å] and angles [°] in 2
	Table S4. Bond lengths [Å] and angles [°] in 3
	Table S5. Short intra– and intermolecular contacts in the structures
	Table S6. Magneto-structural relationships in 1D cobalt(II)-dicyanamido complexes9
	Table S7. Magneto-structural relationships of 2D cobalt(II)-dicyanamido complexes14
3	The HFEPR and FIRMS spectra21
	Figure S8. Blue traces: HF EPR spectra of compounds 1 and 2 recorded at similar conditions
	Figure S9. Blue traces: HF EPR spectra of compounds 321
4	Selected AC susceptibility data
	Figure S10. Field dependence of the AC susceptibility for 1 through 3 at $T = 2.0$ K for a set of trial frequencies. Lines – guide for eyes
	Figure S11. Temperature dependence of the AC susceptibility for 1 through 3 at $B_{DC} = 0.2$ T for 22 frequencies of the oscillating field
	Figure S12. Frequency dependence of the AC susceptibility at $B_{DC} = 0.2$ T. Lines – fitted, using the two-set Debye model
	Figure S13. Argand plot (left) and the Arrhenius-like plot (right). Solid line – fitted with Raman-like and phonon-bottleneck terms $\tau^{-1} = CT^n + FT^l$ 25
	Figure S14. Various dependences of the high-frequency relaxation time. Dashed (dot- dashed) lines – linear fits to the high-temperature (low-temperature) windows. Solid – combined Raman-like and phonon-bottleneck terms

1. Synthesis and characterization

Materials. The reagents used to the synthesis were commercially available and they were used without further purification.

Preparation of the complexes. NaN(CN)₂ (0.075 g, 0.84 mmol) dissolved in water (5 cm³) was added to a deep pink methanolic solution of $CoCl_2 \cdot 6H_2O$ (0.10 g, 0.42 mmol) and suitable benzimidazole derivatives (0.84 mmol). The resulting mixture was filtered and allowed to evaporate at room temperature. X–ray quality pink crystals of **1–3** were grown after few days and they were collected by filtration and air-dried.

 $[Co(5,6-(Me)_2-bzim)_2(dca)_2]_n (1): Yield 80\%. IR (KBr, cm⁻¹): 3203(m) v(N-H); 2274(s) v_{as} + v_s(C\equiv N_{dca}); 2253(s) v_{as}(C\equiv N_{dca}); 2187(vs) v_s(C\equiv N_{dca}); 1507(m), 1399(m) and 1312(s) v(C=N) and v(C=C). Anal. calcd for C_{22}H_{20}N_{10}Co (483.41 g/mol) C, 54.66, H, 4.17; N, 28.98; found C, 54.28, H, 4.04; N, 28.81\%.$

 $[Co(5-Mebzim)_2(dca)_2]_n (2) \text{ Yield 75\%. IR (KBr, cm^{-1}): } 3227(m) v(N-H); 2276(s) v_{as} + v_s(C\equiv N_{dca}); 2251(s) v_{as}(C\equiv N_{dca}); 2185(vs) v_s(C\equiv N_{dca}); 1503(m), 1408(m) \text{ and } 1318(s) v(C=N) and v(C=C). Anal. calcd for C_{20}H_{22}N_{10}Co (461.40 g/mol) C, 52.06; H, 4.81; N, 30.36 found C, 52.16; H, 4.52; N, 30.76\%.$

 $[Co(2-Mebzim)(dca)_2]_n$ (3) Yield 75%. IR (KBr, cm⁻¹): 3368(m) v(N–H); 2277(s) v_{as} + v_s(C=N_{dca}); 2248(s) v_{as}(C=N_{dca}); 2177(vs) v_s(C=N_{dca}); 1534(m), 1456(s) and 1322(s) v(C=N) and v(C=C). Anal. calcd for C₂₀H₁₆N₁₀Co (455.36 g/mol) C, 52.76; H, 3.54; N, 30.76 found C, 52.55; H, 3.47; N, 30.80%.

Physical techniques. The UV-Vis spectra were recorded from solid state samples on Nicolet Evolution 220 and spectrophotometer Nicolet iS50 FT-IR in the ranges 190–1100 nm and 700–1500 nm, respectively (see ESI). IR spectra were recorded on a Nicolet iS5 spectrophotometer in the spectral range 4000–400cm⁻¹ with the samples as of KBr pellets. Elemental analysis was registered by Vario EL III apparatus (Elementar, Germany).

Figure S1. The powder XPRD pattern of 1.

Figure S2. The powder XPRD pattern of 2.

Figure S3. The powder XPRD pattern of 3.

Figure S4. IR spectrum of 1.

Figure S5. IR spectrum of 2.

Figure S6. IR spectrum of 3.

Figure S7. UV/Vis spectra of 1–3.

Compound	$\lambda_{max}/nm(cm^{-1})$	Dq/cm^{-1} a	$B/\mathrm{cm}^{-1}\mathrm{b}$		
1	1064 (9398), 546 (18315), 494 (20242), 465 (21505), 314 (31847), 275 (36363), 228 (43859)	892	691		
2	1056 (9469), 545 (18348), 499 (20040), 465 (21505), 322 (31055), 279 (35842), 226 (44247)	888	665		
3	1079 (9267), 543 (18416), 481 (20790), 307 (32573), 272 (36764), 225 (44445)	915	760		

Table S1. Electronic spectral data for 1–3

^a 10Dq – ligand field splitting parameter ^b B – Racah parameter of the interelectmron repulsion.

2. X-Ray structure data

Dandlar	atha	Dondon	alaa
Boliu iei	iguis	Boliu ali	gies
Co(1) - N(1)	2.1165(19)	N(1)-Co(1)-N(1)a	180.0
Co(1)-N(1)a	2.1165(19)	N(1)-Co(1)-N(99)a	88.75(5)
Co(1)–N(99)	2.1981(14)	N(1)a–Co(1)–N(99)a	91.25(5)
Co(1)-N(99)a	2.1981(14)	N(1) -Co(1)-N(99)b	91.25(5)
Co(1)–N(99)b	2.1981(14)	N(1)a-Co(1)-N(99)b	88.75(5)
Co(1) - N(99)c	2.1981(14)	N(99)a-Co(1)-N(99)b	86.14(7)
		N(1)-Co(1)-N(99)c	88.75(5)
		N(1)a-Co(1)-N(99)c	91.25(5)
		N(99)a-Co(1)-N(99)c	93.86(7)
		N(99)b-Co(1)-N(99)c	180.00(5)
		N(1)-Co(1)-N(99)	91.25(5)
		N(1)a-Co(1)-N(99)	88.75(5)
		N(99)a-Co(1)-N(99)	180.0
		N(99)b-Co(1)-N(99)	93.86(7)
		N(99)c-Co(1)-N(99)	86.14(7)
		C(99)–N(99)–Co(1)	161.49(12)
		C(99)–N(98)–C(99)b	120.20(18)
	N(99)–C(99)–N(98		175.43(15)
		N(99)-C(99)-N(98)	175.1(2)

 Table S2. Bond lengths [Å] and angles [°] in 1

Symmetry codes: (a): 1-*x*,*y*,1-*z*; (b): 1-*x*,1-*y*,1-*z*; (c): *x*,1-*y*,*z*

			_					
Table S3.	Bond	lengths	[Å]	and	angles	[°]	in 2	ļ

Bond lengths		Bond angles		
Bolia lei	iguis	Boliu ali	gies	
Co(1)–N(1) 2.122(3)		N(1)-Co(1)-N(1)d	180.0	
Co(1)-N(1)d	2.122(3)	N(1)-Co(1)-N(99)e	90.30(7)	
Co(1)–N(99)	2.141(2)	N(1)d-Co(1)-N(99)d	90.30(7)	
Co(1)-N(99)d	2.141(2)	N(1)-Co(1)-N(99)d	89.70(7)	
Co(1)–N(99)e	2.141(2)	N(1)d-Co(1)-N(99)e	89.70(7)	
Co(1)-N(99)f	2.141(2)	N(99)d-Co(1)-N(99)e	89.69(11)	
		N(1)-Co(1)-N(99)f	89.70(7)	
		N(1)d-Co(1)-N(99)f	90.30(7)	
		N(99)d-Co(1)-N(99)f	90.31(11)	
		N(99)e-Co(1)-N(99)f	180.00(11)	
		N(1)-Co(1)-N(99)	90.30(7)	
		N(1)d-Co(1)-N(99)	89.70(7)	
		N(99)d-Co(1)-N(99)	180.0	
		N(99)e-Co(1)-N(99)	90.31(11)	
		N(99)f-Co(1)-N(99)	89.69(11)	
		C(99)-N(99)-Co(1)	160.41(19)	
		C(99)e-N(98)-C(99)	117.8(3)	

Symmetry codes: (d): -*x*,*y*,-*z*; (e): -*x*,-*y*,-*z*; (f): *x*,-*y*, *z*

Bond lengths		Bond angles			
Co(1)–N(1)	2.1513(18)	N(1)-Co(1)-N(1)g	180.0		
Co(1)-N(1)g	2.1513(18)	N(1)-Co(1)-N(97)	92.63(7)		
Co(1)–N(97)	2.1445(19)	N(1)-Co(1)-N(97)g	87.37(7)		
Co(1)-N(97)g	2.1445(19)	N(1)-Co(1)-N(99)	93.25(7)		
Co(1)–N(99)	2.1405(19)	N(1)-Co(1)-N(99)g	86.75(7)		
Co(1)–N(99)	2.1405(19)	N(1)g-Co(1)-N(99)	86.75(7)		
		N(1)g-Co(1)-N(99)g	93.25(7)		
		N(1)g–Co(1)–N(97)	87.37(7)		
		N(1)g-Co(1)-N(97)g	92.63(7)		
		N(99)–Co(1)–N(97)	93.98(7)		
		N(99)g–Co(1)–N(97)	86.02(7)		
		N(99)–Co(1)–N(97)g	86.02(7)		
		N(99)g–Co(1)–N(97)g	93.98(7)		
		N(99)–Co(1)–N(99)g	180.0		
		N(97)–Co(1)–N(97)g	180.0		
		C(98)–N(97)–Co(1)	151.16(18)		
		C(99)–N(99)–Co(1)	160.73(19)		
		N(99)–C(99)–N(98)	173.2(2)		
		N(97)–C(98)–N(98)g	173.4(2)		
		C(98)g–N(98)–C(99)	119.7(2)		

Table S4. Bond lengths [Å] and angles [°] in 3

Symmetry codes: (g): 1-x,-y,1-z

D—H•••A	D—H	Н•••А	D•••A	D—H•••A			
			[Å]	[°]			
		1					
$N(2)-H(2) \bullet \bullet N(99)^{h}$	0.86	2.13	2.979(3)	169.0			
		2					
$N(2)-H(2) \bullet \bullet N(98)^{i}$	0.86	2.16	2.983(5)	159.0			
	3						
$N(2)-H(2) \bullet \bullet N(98)^{j}$	0.86	2.34	3.104(3)	149.0			
Symmetry elements: (h): -1/2+x,1/2+y, z; (i): 1/2-x,-1/2+y,-z; (j): 1/2+x,1/2-y,-1/2+z							

Compound /	Со-N _L /Со-О	Co-N _{dca}	Со…Со	Magnetic properties	Ref.
	sing	le μ-1,5-dca bridge			
$[Co(L^1)_4(dca)]_n(ClO_4)_n \cdot 4n(EtOH) \cdot nH_2O$	2.121(4) 2.121(4)	2.088(8) 2.063(9)	8.6090(5)	$C = 3.32 \text{ cm}^3 \text{ mol}^{-1} \text{ K}$ $\Theta = -31.8 \text{ K}$ weak AF interaction	1
[Co(hypy) ₂ (dca)(MeOH) ₂] _n	2.138(3) 2.138(3) Co-O= 2.123(3) Co-O= 2.123(3)	2.103(4) 2.103(4)	8.665	$C = 3.123 \text{ cm}^3 \text{ mol}^{-1} \text{ K},$ $\Theta = -16.29 \text{ K}.$	13
[Co(biim) ₂ (dca) ₂]Cl	2.1386(18) 2.1593(18) 2.1372(18) 2.1325(18)	2.1133(19) 2.1900(19)	7.286	$D = 40.3 \text{ cm}^{-1},$ $J/k\text{B} = 20.05 \text{ cm}^{-1}$	17
[Co(enbzpy)(dca)] _n (ClO ₄) _n	room temperature 2.102(3) 2.083(3) 2.023(3) 2.028(3)	room temperature 2.092(3) 2.136(3)	8.57	SCO	18
	low temperature 2.138(8) 2.074(8) 2.089(8) 2.133(8)	low temperature 2.141(9) 2.073(8)			
[Co(enbzpy)(dca)] _n (PF ₆) _n	room temperature 2.109(5) 2.045(4) 2.034(9) 2.097(4) Low temperature 2.039(6) 1.921(6)	room temperature 2.127(5) 2.134(5) Low temperature 2.163(7)	room temperature 8.699 Å low temperature 8.718	SCO	20

 Table S6. Magneto-structural relationships in 1D cobalt(II)-dicyanamido complexes

	1.916(6)	2.181(8)			
	2.043(7)				
[Co(bpym)(dca) ₂]·H ₂ O	2.151(3)	2.092(4)	8.649	J = -1.42	21
	2.151(3)	2.103(5)		Θ= -5.4 K	
	$Co-O_{H2O}=2.124(4)$				
$[Co(L^5)(dca)]_n$	1.985 (4)	1.956 (4)	5.949	$J = -3.52 \text{ cm}^{-1}$	4
,	1.951 (3)	2.330 (5)			
	Co-O=1.965 (3)				
$[Co(L^9)(dca)_2]_n$	2.086(2)	2.164(2)	8.542	$C = 2.8 - 3.4 \text{ cm}^3 \text{ mol}^{-1} \text{ K}$	9
	2.240(2)	2.098(2)		J = -0.21 K	
	2.154(2)				
	2.042(3)				
$[Co(tpz)(dca)(H_2O)](dca)$	2.213(2)	2.104(2)	8,465	$\theta = 7.97 \text{ K}$	22
	2.078(2)	2.096(2)		$C=2.59 \text{ cm}^{3}\text{Kmol}^{-1}$	
	2.221(2)				
	Co- $O_{H2O} = 2.005(2)$				
$[Co(L^7)(dca)(ClO_4)_2MeOH]_n$	Co(A)	Co(A)	8.451 Å	lack of significant	6
	2.1619(19)	2.1828(18)	8.532 Å	magnetic interactions	
	2.0785(19)	2.0851(19)			
	2.1011(18)	Co(B)			
	2.1323(19)	2.1013(18)			
	Co(B)	2.089(2)			
	2.141(2)				
	2.1017(19)				
	2.097(2)				
	2.1661(19)				
	doub	le µ-1,5-dca bridg	e		
$[Co(im)_2(dca)_2]_n$	2.095(2)	2.157(2)	7.359	$C = 2.8 - 3.4 \text{ cm}^3 \text{ mol}^{-1}$	5
	2.095(2)	2.157(2)		J = -24.8 K	
		2.153(2)			
		2.153(2)			
$[Co(im)_2(dca)_2]_n$	2.101(2)	2.161(2)	7.395(1)	$C = 2.8 - 3.4 \text{ cm}^3 \text{ K mol}^{-1}$	11

	2.101(2)	2.161(2) 2.164(3)		J = -1.0 K	
		2.164(3)			
$[Co(ampy)_2(dca)_2]$	2.193(3)	2.126(2)		_	2
	2.193(3)	2.126(2)			
		2.128(2)			
		2.128(2)			
$[Co(4omp)_2(dca)_2]_n$	2.126(4)	2.116(4)	7.076(3)	$C = 3.58 \text{ cm}^3 \text{ mol}^{-1}$	14
	2.126(4)	2.116(4)		$\Theta = -15.5 \text{ K}$	
		2.124(5)			
		2.124(5)			
$[Co(pyr)_2(dca)_2]_n$	Co-O= 2.097(2)	2.084 (3)	7.220	weak antiferromagnetic	15
	Co-O = 2.072(3)	2.084 (3)		interaction	
		2.099 (2)			
		2.099 (2)			
$[Co(mepy)_2(dca)_2]_n$	2.1229 (18)	2.1385 (17)	7.305(1)		24
	2.1229 (18)	2.1385 (17)			
		2.1385 (17)			
		2.1385 (17)			
[Co(4-nic) ₂ (dca) ₂] _n ·2nCH ₃ OH	2.157(2)	2.114(3)	7.353	$C = 3.58 \text{ cm}^3 \cdot \text{mol} - 1 \cdot \text{K},$	26
	2.157(2)	2.114(3)		$\theta = -17.8 \text{ K}$	
		2.128(2)			
		2.128(2)			
$[Co(dca)_2(H_2O)_2]_n \cdot (hmt)_n$	Co- $O_{H2O} = 2.082(1)$	2.122(2)	7.362	$J = -0.50 \text{ cm}^{-1}$	3
		2.118(2)			
$(Ph_4P)[Co(dca)_4]$	-	2.176(3)	7.589(1)	$C = 1.394 \text{ cm}^3 \text{ mol}^{-1}$	7
		2.091(3)		$\Theta = +0.1 \text{ K}$	
		2.165(3)		very weak ferromagnetic	
		2.176(3)		interaction	
		2.091(3)			
		2.165(3)			

[Co(phen)(dca) ₂ (H ₂ O)·MeOH] _n	2.210(2) 2.210(2) 2.126(2)	2.106(2) 2.102(2)	7.3244(5)	_	8
	2.112(2)				
$\frac{1}{\left[C_{0}(\operatorname{hinv})(\operatorname{deg})\right]}$	$C_0 - O_{H20} = 2.12/(2)$	2 124(2)	7 275(1)	D= 02 7am-1	12
$[Co(Dipy)(dca)_2]_n$	2.129(2) 2.129(2)	2.134(2) 2.134(2)	7.575(1)	D- 95./CIII *	12
	2.129(2)	2.134(2) 2.102(2)			
		2.102(2)			
$[Co(mepypz)_2(dca)_2]_n$	Co-O= 2.109(2)	2.122(3)	7.379(3)	_	16
	Co-O=2.109(2)	2.122(3)			
		2.102(3)			
		2.102(3)			
$[Co(pydz)_2(dca)_2]_n$	2.166(2)	2.1095(14)	7.3409(5)	weak AF interaction	19
	2.166(2)	2.1095(14)		$C=3.46 \text{ cm}^3 \text{ K mol}^{-1}$	
		2.1095(14) 2.1095(14)		920.40	
$[Co(L^{21})_2(dca)_2]_2$	2 154(3)	2.10/3(14)	7 481(1)		23
	2.154(3)	2.130(3)	/		23
		2.122(3)			
		2.122(3)			
${[Co(bpm)_2(dca)](ClO_4)}_n$	2.141(4)	2.103(5)	7.592	-	25
	2.141(4)	2.103(5)			
		2.103(5)			
		2.103(5)			
	<u>αουδιε μ-1,5-α</u>	$\frac{1}{2}$ and $\frac{1}{2}$	onor ligand	L 0.05 1	2
$[Co(bpds)(dca)_2]_n$	2.180(5) 2.180(5)	2.143(5)	7.302	$J = -0.95 \text{ cm}^{-1}$	3
	2.180(3)	2.142(3) 2.142(5)			
		2.143(3) 2 142(5)			
$[Co_2(tppz)(dca)_4]_n$	2,156(2)	2.142(3) 2.044(2)	7 377 A	$J = -1.10 \text{ cm}^{-1}$	10
$\mathbf{L} = -2(\mathbf{T} \mathbf{T}^2)(\mathbf{w} \cdot \mathbf{w}) + \mathbf{J}\mathbf{u}$	2.156(2)	2.044(2)			

2.114(2)	2.141(2)		
2.114(2)	2.141(2)		
2.140(2)			
2.140(2)			

 $L^{1}= 4$ -(imidazol-1-yl)phenol; $L^{2}=$ anion N-(picolinoyl)biurate; $L^{3}=$ (N,N-diethyl,N'-(pyridin-2-yl)benzylidene)ethane-1,2-diamine; $L^{4} = N^{4}$ -Schiff base ligand; **ampy**= 2-aminopyridine; **hmt**= hexamethylenetetramine; **bpds**= 4,4'-bipyridyl disulfide;; **im**=imidazole; **phen**=4,7-phenanthroline; **tppz**= tetra-2-pyridylpyrazine; **bipy**= 4,4'-bipyridine; **hypy**= 3-hydroxypyridine; **pyr**=2-pyrrolidone; **mepypz**= 3,5-dimethyl-1-(2-pyridyl)pyrazole; **biim**= 2,2'-biimidazole; **enbzpy**= N,N'-bis(2-pyridinylbenzylide=ne)ethane-1,2-diamine; **pydz** = pyridazine, **bpym**= bipyrimidine; **tpz**= 2,4,6-tri(2-pyridyl)-1,3,5-triazine; $L^{5}=$ 4-picolyl choride); **mepy**= 4-methylpyridine; **bpm**= bis(3,5-dimethyl)pyrazolylmethane; **40mp** = 4-methoxypyridine; **4-nic**= isonicotinamide

- 1. L. Zheng, S. Hu, A. Zhou, Trans. Met. Chem., 2015, 40, 637-642.
- 2. A. C. B. Yuoh, M. Ondoh Agwara, D. Mbom Yufanyi, M.Aseng Conde, R. Jagan, K. Oben Eyong, Internat. J. Inorg. Chem., 2015, 1-8.
- 3. S. C. Manna, A. Kumar Ghosh, J. Ribas, M. G.B. Drew, C.-N. Lin, E. Zangrando, N. Ray Chaudhuri, *Inorg. Chim. Acta*, 2006, 359, 1395–1403.
- 4. M. Biswas, G. Pilet, M. S. El Fallah, J. Ribas, S. Mitra, Inorg. Chim. Acta, 2008, 361, 387-392.
- 5. R. Sen, A. Bhattacharjee, P.Gütlich, Y. Miyashita, K.-I. Okamoto, S. Koner, Inorg. Chim. Acta, 2009, 362, 4663–4670.
- 6. S. Banerjee, S. Halder, P. Brandão, C. J. Gómez García, S. Benmansour, A. Saha, Inorg. Chim. Acta, 2017, 464, 65-73.
- 7. L. Jäger, C. Wagner, M. Korabik, A. Zygmunt, J. Mroziński, J. Mol., Struct, 2001, 570, 159-164.
- 8. D. S. Tonzing, S. R. Batten, K. S. Murray, J. Mol. Struct., 2006, 796, 63-68.
- 9. S. Kundu, S. Roy, K. Bhar, R. Ghosh, C.-H. Lin, J. Ribas, B.Kumar Ghosh, J. Mol. Struct., 2013, 1038, 78-85.
- 10. G.-Y. Hsu, C.-W. Chen, S.C. Cheng, S.-H. Lin, H.-H. Wei, C.-J. Lee, Polyhedron, 2005, 24, 487-494.
- 11. A. Das, C. Marschner, J. Cano, J. Baumgartner, J. Ribas, M. Salah El Fallah, S. Mitra, Polyhedron, 2009, 28, 2436–2442.
- 12. L. Vahovska, I. Potočňak, S. Vitushkina, M. Dušek, J. Titiš, R. Boča, Polyhedron, 2014, 81, 396-408.
- 13. L. Ling Zheng, C. Xia Zhou, S. Hu, A. J. Zhou, Polyhedron, 2016, 104, 91-98.
- 14. F. A. Mautner, M.Traber, R. C. Fischer, S. S. Massoud, R. Vicente, Polyhedron, 2017, 138, 13-20.
- 15. B.-Wa.Sun, So. Gao, B.-Q.Ma, Z.-M. Wang, Inorg. Chem. Commun., 2001, 4, 72-75.
- 16. P. Pal, S. Konar, P. Lama, K. Das, A. Bauza, A. Frontera, S. Mukhopadhyay, J. Phys. Chem. B, 2016, 120, 6803-6811.
- 17. S. R. Marshall, C. D. Incarvito, W. W. Shum, A. L. Rheingold, J.S. Miller, Chem. Commun., 2002, 3006–3007.
- 18. K. Bhar, S.Khan, J. Sanchez Costa, J. Ribas, O. Roubeau, P. Mitra, B. Kumar Ghosh, Angew. Chem. Int. Ed., 2012, 51, 2142 –2145.
- 19. M. Wriedt, C. Näther, Dalton Trans., 2011, 40, 886-898.
- 20. S. Roy, S. Choubey, K.Bhar, N. Sikdar, J. Sánchez Costa, P. Mitra, B. Kumar Ghosh, Dalton Trans., 2015, 44, 7774–7776.

- 21. S. R. Marshall, C. D. Incarvito, J.L. Manson, A. L. Rheingold, J. S. Miller, Inorg. Chem. 2000, 39, 1969-1973.
- 22. J. Luo, L. Qiu, B. Liu, X. Zhang, F. Yang, L. Cui, Chin. J. Chem., 2012, 30, 522-528.
- 23. H. Pei, S. Lu, J. Li, Y. Sun, X. Wu, W. Du, Cryst. Res. Technol. 2006, 41, 423-426.
- 24. W. Huang, J. Zhang, C. Zhang Acta Cryst., 2013, E69, m90.
- 25. W.-Z. Shen, X.-Y. Chen, P. Cheng, D.-Z.Liao, S.-P. Yan, Z.-H. Jiang, Z. Anorg. Allg. Chem., 2003, 629, 2591–2595.
- 26. L.-L. Zheng, X.-M. Zhuang, Z. Anorg. Allg. Chem., 2010, 636, 2500-2507.

Compound/	topology	Co-N _L /Co- O	Co–N _{dca}	Со…Со	Magnetic properties	Ref.		
single $\mu_{1.5}$ -dca								
[Co(bzim) ₂ (dca) ₂] _n		2.1492(16) 2.1492(16)	2.1152(17) 2.1152(17) 2.1427(18) 2.1427(18)	7.623	$\Theta = 17.14 \text{ K}$ C = 3.17 cm ³ K mol ⁻¹	27		
[Co(pte) ₂ (dca) ₂] _n		2.169(2) 2.169(2)	2.097(2) 2.097(2) 2.146(2) 2.146(2)	8.5739	C = $3.13 \text{ cm}^3 \text{ K}$ mol ⁻¹ Θ = -9.1 K weak antiferromagnetic interaction	28		
[Co ₂ (4-cypy) ₄ (dca) ₄] _n		Co(1) 2.179(7) 2.156(6) Co(2) 2.149(6) 2.181(6)	2.122(6) 2.079(6)	8.037(3) 7.745(3)	J=-1.14K	30		

 Table S7. Magneto-structural relationships of 2D cobalt(II)-dicyanamido complexes.

[Co(dmdpy)(dca) ₂]	2.142(2) 2.142(2)	2.114(2) 2.095(3) 2.114(2) 2.095(3)	8.102(4)	weak magnetic interaction	32
{[Co(ambzim) ₂ (dca) ₄]} _n	2.1171(13) 2.1171(13)	2.1520(13) 2.1520(13) 2.1591(15) 2.1591(15)	8.186 Å	_	33
${[Co(L^6)_2(dca)_2]_2(L^6)}_n$	Co-Owoda= 2.057(5) Co-Owoda= 2.057(5)	2.124(7) 2.124(7) 2.124(6) 2.124(6)	7.894(1)	_	34
[Co(4NOpy) ₂ (dca) ₂ (CH ₃ CN)] _n	2.149, 2.162	2.106, 2.107, 2.110, 2.112	8.13, 8.16	J= -0.8 weak signals for both χmol ' and χmol	35

double $\mu_{1.5}$ -dca + double $\mu_{1.3.5}$ -dca							
[Co(dca) ₂ (H ₂ O)]∙phz		Co(2)- Owoda = 2.049(2) Co(2)- Owoda = 2.049(2)	Co(1) 2.080(2) 2.086(2) 2.213(2) 2.080(2) 2.086(2) 2.213(2) Co(2) 2.121(2) 2.163(2) 2.121(2) 2.163(2)	7.4110 9.7995	μ _{Co} =4.84μ _B	36	
	μ _{1,5} -de	$ca + \mu_{1,3,5}$ -dca					
[Co(pzdo)(dca) ₂]	_	Co- O=2.124(4) Co- O=2.124(4)	Co(1) 2.100(3) 2.100(3) 2.100(3) 2.100(3) Co(2) 2.179(4) 2.179(4)	7.499 Å	Θ =-9.4 K C= 3.17 cm ³ mol ⁻¹ K	44	
$[Co_2(modo)_2(dca)_4]$	-	Co- O=2.122(2) Co- O=2.122(2)	2.065(2) 2.065(2) 2.178(2) 2.089(2)	5.803, 7.877	$C = 6.61 \text{ cm}^3 \text{ mol}^{-1}$ K $\Theta = -33.5 \text{ K}$	44	
[Co(pydz) ₂ (dca) ₂] _n	_	2.140(3)	2.122(2) 2.088(2) 2.122(2) 2.088(2) 2.231(3) 2.231(3)	7.3474(2) 6.0490(6)	$C = 3.50 \text{ cm}^{3} \text{ K mol}^{-1}$ $\Theta = -18.11 \text{ K}$ $\mu_{\text{eff}} = 5.29 \mu_{\text{B}}$	19	

	double µ	u _{1,5} -dca + ligan	d			
[Co(bnzd)(dca) ₂] _n		2.1895(16) 2.1895(16)	2.1173(16) 2.1173(16) 2.0996(17) 2.0996(17)	7.293 though dca 12.941 through <i>bnzd</i>	J = -3.38 K weak antiferromagnetic interaction	29
${[Co(L^7)_2(dca)](OH)(gly)_2}_n$		2.182 2.163	2.140 2.140 2.163 2.163	8.8 though dca 14.5 though ligand	_	37
[Co(3bpo)(dca) ₂] _n		2.176(4) 2.160(4)	2.091(4) 2.103(5) 2.136(4) 2.115(4)	7.383(6)	it is impossible to fit the magnetic data of 2-D Co ^{II}	41
[Co(btm) ₂ (dca)]ClO ₄		2.146(5) 2.140(5) 2.151(5) 2.143(5) Co(2) 2.156(6) 2.156(6) 2.136(6) 2.136(6)	2.084(5) 2.072(5)	8.539(2) 8.910(3)	weak antiferromagnetic interaction	42

 L^6 = pyridinium-4-olate; L^7 = bis[3,5-dimethyl-4-(49-pyridyl)pyrazol-1-yl]methane; bzim = benzimidazole; pte = 1-(2,4-difluorophenyl-2- (1H-1,2,4-triazol-1-yl)ethanone, bnzd= benzidine; 4cypy= 4- cyanopyridine, dmdpy= 5,5'-dimethyl-2,2'-dipyridine; ambzim= 2-aminobenzimidazole; 4NOpy= 4-(N-tert-butyloxylamino)pyridine; pypz= 3,5-dimethyl-1-(2-pyridyl)pyrazole; phz= phenazine; atz= 2-amino-

1,3,5-triazine; **bim**=1-benzylimidazole, **bmim**= 1-benzyl-2-methylimidazole; **mepyz**= methylpyrazine; **3bpo**= 2,5-bis(3-pyridyl)-1,3,4oxadiazole; **btrm**= 1,2-bis(1,2,4-triazole-1-yl)methane; **pzdo**= pyrazine dioxide; **modo**= 2,3,5-trimethylpyrazine-dioxide; **phen**= 1,10phenanthroline; **2,9-dmphen**= 2,9-dimethylphenanthroline

- 27. S. Wang, L. Wang, B. Li, Y. Zhang, J. Chem. Crystallogr., 2009, 39, 221-224.
- 28. L. Zhang, Y. Ling, A.-X. Hu, T.-T.Yao, J. Li, Inorg. Chim. Acta, 2009, 362, 4867-4874.
- 29. S. Khan, S. Roy, K. Bhar, R. Ghosh, C.-H. Lin, J. Ribas, B. Kumar Ghosh, Inorg. Chim. Acta, 2013, 398, 40-45
- 30. M. Du, Q.Wang, Y.Wang, X.-J. Zhao, J. Ribas, J. Solid State Chem., 2006, 179, 3926–3936
- 31. P. M. van der Werff, S. R. Batten, P. Jensen, B. Moubaraki, K. S. Murray, E. H.-K. Tan, Polyhedron, 2001, 20, 1129–1138
- 32. L. B. Lopes, C.C. Correa, G.P. Guedes, M.G.F. Vaz, R. Diniz, F. C. Machado, Polyhedron, 2013, 50, 16-21
- 33. A. Das, B.Bhattacharya, D.Kumar Maity, A. Halder, D. Ghoshal, Polyhedron, 2016, 117, 585–591.
- 34. L. Zheng, Journal of Chemistry, 2013, 1-10.
- 35. H.Ogawa, K. Mori, K. Murashima, S. Karasawa, N. Koga, Inorg. Chem. 2016, 55, 717-728.
- 36. A. M. Kutasi, S. R. Batten, B. Moubaraki, K. S. Murray, J. Chem. Soc., Dalton Trans., 2002, 819-821.
- 37. M. Du, X.-G. Wang, Z.-H. Zhang, L.-F. Tang, X.-J. Zhao, CrystEngComm, 2006, 8, 788-793.
- 38. J. Palion-Gazda, T.Klemens, B.Machura, J. Vallejo, F. Lloret, M. Julve, *Dalton Trans.*, 2015, 44, 2989–2992.
- 39. A. Świtlicka-Olszewska, J. Palion-Gazda, T. Klemens, B. Machura, J. Vallejo, J.Cano, F.Lloret, M. Julve, *Dalton Trans.*, 2016, 45, 10181–10193.
- 40. A. M. Kutasi, A. R. Harris, S.R. Batten, B. Moubaraki, K. S. Murray, CrystGrowth&Des., 2004, 4, 605-610.
- 41. M. Du, Q. Wang, C.P. Li, X.-J. Zhao, J. Ribas, CrystalGrwoth&Des., 2010, 10, 3285-3296.
- 42. X.-Y. Chen, P. Cheng, S.-P. Yan, D.-Z. Liao, Z.-H. Jiang, Z. Anorg. Allg. Chem. 2005, 631, 3104–3107
- 43. H.-L. Sun, S. Gao, B.-Q.Ma, G.Su, Inorg. Chem., 2003, 42, 53995404.
- 44. H.-L. Sun, Z.-M. Wang, S. Gao, Inorg. Chem., 2005, 44, 2169–2176

3. The HFEPR and FIRMS spectra

Figure S8. Blue traces: HF EPR spectra of compounds 1 and 2 recorded at similar conditions.

Figure S9. Blue traces: HF EPR spectra of compounds 3.

Figure S10. Field dependence of the AC susceptibility for 1 through 3 at T = 2.0 K for a set of trial frequencies. Lines – guide for eyes.

Figure S11. Temperature dependence of the AC susceptibility for **1** through **3** at $B_{DC} = 0.2$ T for 22 frequencies of the oscillating field.

Figure S12. Frequency dependence of the AC susceptibility at $B_{DC} = 0.2$ T. Lines – fitted, using the two-set Debye model.

Figure S13. Argand plot (left) and the Arrhenius-like plot (right). Solid line – fitted with Ramanlike and phonon-bottleneck terms $\tau^{-1} = CT^n + FT^l$.

Figure S14. Various dependences of the high-frequency relaxation time. Dashed (dot-dashed) lines – linear fits to the high-temperature (low-temperature) windows. Solid – combined Raman-like and phonon-bottleneck terms.