Supplementary Information

$MGa_2B_2O_7$: Bi³⁺, Al³⁺ (M = Sr, Ba) blue phosphors with quantum yield of 99% and negative thermal quenching

Shuai Yang,^{1,2} Yuning Wu,³ Fangyu Yue,³ Ruijuan Qi,³ Bin Jiang,³ Jiahao Wu,³ Yang Shen,³ Chungang Duan,³ Yongkui Shan,¹ Qingbiao Zhao³, Yuefei Zhang²

¹School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241 China
²Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430073, China
³Key Laboratory of Polar Materials and Devices (MOE), Department of Electronic Science, East China Normal University, Shanghai, 200241 China

Table of Contents

Chemicals information	3
XRD patterns	4
Band gap	5
Emission spectra and Interaction between Bi ³⁺ ions	6
Excitation spectra	8
Emission spectra of host lattice and phosphors	9
Raman spectra	10
Quantum yields	13
Variable-temperature photoluminescence	16
Variable temperature XRD patterns	23
White LEDs performance	24
References	26

Chemicals information

 Table S1. Information about chemicals.

Chemicals	Information
SrCO ₃	Sigma-Aldrich, 99.9%
BaCO ₃	Alfa Aesar, 99.8%
Ga ₂ O ₃	Adamas Reagent Co., Ltd., 99.99%
Al_2O_3	Beijing Hwrkchemical Co,. Ltd., 99.99%
H ₃ BO ₃	Sigma-Aldrich, 99.97%
Ethanol	Nanjing Chemical Reagnet Co.,LTD. 99.7%

XRD patterns

Figure S1. (A & B) XRD patterns of $SrGa_2B_2O_7$ (SGBO) host and doped phosphors and $BaGa_2B_2O_7$ (BGBO) host and doped phosphors.

Band gap

The band gap was calculated by the following formula:

$$\alpha h \nu = A (h \nu - E_g)^n \tag{1}$$

where E_g is the band gap, h is the Planck constant, α is the absorption rate, n is the photon frequency. n is 1/2 when the electronic transition is direct, and n is 2 when the electronic transition is indirect.^{1, 2} For MGa₂B₂O₇ (MGBO, M = Sr, Ba), the electronic transition is a direct transition, thus n is 1/2.

Figure S2. Band gap of SGBO and BGBO phosphors.

Emission spectra and interaction between Bi³⁺ ions

According to the calculation formula of the average critical distance:³

$$R_c = 2\left[\frac{3V}{4\pi x_c N}\right]^{1/3}$$
(2)

where R_c is the critical distance between luminescent ions, V is the cell volume of the host lattice, x_c is the ratio of luminescent ions, and N is the number of lattices in a unit cell. **Table S2** is the average critical distance of Bi³⁺ in SGBO: xBi³⁺ phosphors and BGBO: x'Bi³⁺ phosphors.

According to **Table S2**, it can be seen that the average critical distance of Bi^{3+} in the *M*GBO: Bi^{3+} phosphors is higher than 5 Å when concentration quenching occurs. The exchange coupling effect often occurs when the ions distance is small (~5 Å), so the reason for the concentration quenching of the *M*GBO: Bi^{3+} phosphors is not the exchange coupling effect.

SGBO: xBi ³⁺ phosphors		BGBO: x'Bi ³⁺ phosphors	
X	Rc (Å)	x'	Rc (Å)
0.005	20.84	0.001	34.84
0.0075	18.46	0.0025	26.20
0.01	16.95	0.005	21.21
0.025	13.02	0.0075	18.78
0.05	10.75	0.01	17.24
		0.025	13.23
		0.05	10.91
		0.075	9.79

Table S2. Average critical distance of Bi³⁺ in SGBO: xBi³⁺ phosphors and BGBO: x'Bi³⁺ phosphors.

The interaction between ions was calculated by the following formula:

$$\frac{I}{x} = k [1 + \beta x^{\theta/3}]^{-1}$$
(3)

where I is the integrated emission intensity, x is the ratio of Bi³⁺, k and β are constants, θ represents the type of interaction between ions. With $\theta = 3$, the interaction is the energy transfer between adjacent ions; With $\theta = 6$, the interaction is electric dipole-electric dipole interaction; With $\theta = 8$, the interaction is electric dipole-electric quadrupole interaction; With $\theta = 10$, the interaction is the electric quadrupole-electric quadrupole interaction.⁴ For SGBO: Bi³⁺ phosphors, the interaction between Bi³⁺ is the electric dipole-electric dipole interaction, and for BGBO: Bi³⁺ phosphors, the interaction between Bi³⁺ is the energy transfer between adjacent ions.

Figure S3. (A) Emission spectra of SGBO: xBi^{3+} phosphors (x = 0.0050 ~ 0.0500, the insert is the emission intensity change of SGBO: Bi^{3+} phosphors); (B) Emission spectra of BGBO: Bi^{3+} phosphors (x' = 0.0010 ~ 0.0750, the insert is the emission intensity change of BGBO: Bi^{3+} phosphors); (C) Concentration quenching of SGBO: Bi^{3+} phosphors; (D) Concentration quenching of BGBO: Bi^{3+} phosphors.

Excitation spectra

Figure S4. (A) Excitation spectra of SGBO: xBi^{3+} phosphors (x = 0.0050 ~ 0.0500); (B) Excitation of SGBO: $0.01Bi^{3+}$, yAl^{3+} phosphors (y = 0.1 ~ 1.0); (C) Excitation spectra of BGBO: x'Bi³⁺ phosphors (x' = 0.0010 ~ 0.0750); (D) Concentration quenching of BGBO: $0.005Bi^{3+}$, y'Al³⁺ phosphors (y' = 0.1 ~ 0.5).

Emission spectra of host lattice and phosphors

Figure S5. (**A**) Emission spectra of SGBO host lattice, SGBO: 0.01Bi³⁺ phosphor, SGBO: 0.01Bi³⁺, 0.50Al³⁺ phosphor; (**B**) Emission spectra of BGBO host lattice, BGBO: 0.005Bi³⁺ phosphor, SGBO: 0.005Bi³⁺, 0.40Al³⁺ phosphor.

Raman spectra

Figure S6. Raman spectra of SGBO host lattice and $Sr_{0.99}Ga_{2-y}B_2O_7$: 0.01Bi³⁺, yAl³⁺ phosphors (y = 0, 0.3, 0.5, 0.7).

Raman spectra were collected for the SGBO: 0.01Bi³⁺, yAl³⁺ with various Al doping rate. Raman spectra is directly related to the vibration modes in the structure.⁵⁻⁸ We calculated the theoretical vibration modes for SGBO: 0.01Bi³⁺, yAl³⁺ and matched each of the experimental peak with the theoretical calculation. (**Table S3** and **Table S4**).

Index	Symmetry	Frequency (cm ⁻¹)	Index	Symmetry	Frequency (cm ⁻¹)
5	B_{2g}	69.01441	37	B _{1g}	418.3227
6	\mathbf{B}_{3g}	77.85386	39	Ag	444.3741
7	\mathbf{B}_{1g}	89.79546	44	Ag	485.3358
8	\mathbf{B}_{1g}	114.2123	45	B_{3g}	490.1057
9	A_{g}	120.0164	46	Ag	538.2057
10	\mathbf{B}_{3g}	124.2526	47	B_{1g}	556.1181
12	B_{2g}	124.9865	49	B_{2g}	609.8219
13	A_{g}	126.0872	54	B_{3g}	667.6285
16	\mathbf{B}_{1g}	149.7036	56	B_{1g}	688.9099
18	B_{3g}	162.6125	57	A_g	695.6146
23	B_{2g}	201.1392	59	B_{1g}	719.7646
24	A_{g}	204.1079	62	A_g	850.0214
25	B_{3g}	208.2441	64	B_{1g}	995.9223
29	\mathbf{B}_{1g}	276.2911	65	B_{1g}	1231.118
30	\mathbf{B}_{2g}	301.8422	67	Ag	1264.742
32	B_{3g}	308.2132	71	A_g	1343.463
33	A_{g}	311.5489	72	B_{1g}	1346.065
36	\mathbf{B}_{1g}	328.2271			

Table S3. Energy indices, symmetries and frequencies of the Raman-active modes

Index	Symmetry	Calculated	Experimental
		Frequency(cm ⁻¹)	Frequency(cm ⁻¹)
9	Ag	120.0164	135
16	$\mathbf{B}_{1\mathrm{g}}$	149.7036	176
23	B_{2g}	201.1392	200
24	A_{g}	204.1079	214
25	B_{3g}	208.2441	233
30	B_{2g}	301.8422	328
36	$\mathbf{B}_{1\mathrm{g}}$	328.2271	352
39	A_{g}	444.3741	470
44	A_{g}	485.3358	499
46	A_{g}	538.2057	549
49	\mathbf{B}_{2g}	609.8219	639
57	A_{g}	695.6146	718
62	A_{g}	850.0214	884

Table S4. Correspondence between the measured Raman spectral peak positions and the calculated results

The lattice constants were calculated as 7.297 Å and 5.854 Å, agreeing with experimental results. At Γ point, 72 phonon modes were calculated, however, only 35 modes with symmetries A_g , B_{1g} , B_{2g} , and B_{3g} are Raman active. **Table S3** lists the energy eigenvalues and symmetries of these Raman-active modes. By comparing theory with experiment, we can identify that the mode with the highest Raman signal strength is the 39th mode with symmetry A_g . Other major peaks can also be identified accordingly. **Table S4** lists the correspondence between the measured Raman spectral peak positions and the calculated results.

Quantum yields

The quantum yield is tested using an integrating sphere and calculated according to equation:⁹

$$QY = \frac{P_c}{L_a - L_c}$$

(6)

where QY is the quantum yield, P_c is the count of emitted photons of the sample in the integrating sphere, L_a is the count of reflected photons of the excitation light in the integrating sphere with a blank background, and L_c is the count of reflected photons of the excitation light in the integrating sphere of the sample.

Figure S7. Quantum yield of (A) $Sr_{0.99}Ga_2B_2O_7$: $0.01Bi^{3+}$; (B) $Sr_{0.99}Ga_{1.50}B_2O_7$: $0.01Bi^{3+}$, $0.50Al^{3+}$; (C) $Ba_{0.995}Ga_2B_2O_7$: $0.005Bi^{3+}$; (D) $Ba_{0.995}Ga_{1.60}B_2O_7$: $0.005Bi^{3+}$, $0.40Al^{3+}$ phosphors.

SGBO: 0.01Bi ³⁺ , yAl ³⁺ BGBO: 0.00		05Bi ³⁺ , y'Al ³⁺	
Ratio of Al ³⁺	Quantum yield	Ratio of Al ³⁺	Quantum yield
0	33%	0	83%
0.10	72%	0.10	46%
0.20	80%	0.20	65%
0.30	88%	0.30	85%
0.40	92%	0.40	99%
0.50	96%	0.50	87%
0.60	93%		
0.70	93%		
0.80	83%		
0.90	74%		
1.00	72%		

Table S5. Quantum yield of *M*GBO: Bi^{3+} , Al^{3+} (*M* = Sr, Ba)

Color	Phosphor	Quantum yield	Ref
red	ScVO ₄ : Bi ³⁺	56%	10
orange	CaBaZn ₂ Ga ₂ O ₇ : Bi ³⁺	16.0%	11
	CaBaZn ₂ Ga ₂ O ₇ : Bi ³⁺	13.4%	11
	Sr ₂ Zn ₂ Ga ₂ O ₇ : Bi ³⁺	22.3%	11
yellow	La ₃ BWO ₉ : Bi ³⁺	19.2%	12
	KLaTa ₂ O ₇ : Bi ³⁺	42.3%	13
	LuVO ₄ : Bi ³⁺	68%	14
	Ba ₃ Y ₄ O ₉ : Bi ³⁺	24.7%	15
	CaAl ₄ O ₇ : Bi ³⁺	39%	16
green	LiCa ₃ MgV ₃ O ₁₂ : Bi ³⁺	43.9%	17
	$Ba_9Y_2Si_6O_{24}$: Bi^{3+}	64.5%	18
	YVO ₄ : Bi ³⁺	74.8%	19
	Gd ₃ Ga ₅ O ₁₂ : Bi ³⁺	15.4%	20
	Gd ₂ ZnTiO ₆ : Bi ³⁺	18%	21
	Sr ₂ MgSi ₂ O ₇ : Bi ³⁺	20.6%	22
	$La_2Zr_2O_7$: Bi ³⁺	32.6%	23
	YNbO ₄ : Bi ³⁺	45.6%	19
	La ₂ (GeO ₄)O: Bi ³⁺	48%	24
	Ca ₁₄ Al ₁₀ Zn ₆ O ₃₅ : Bi ³⁺	49.0%	25
	Ba ₉ Y ₂ Si ₆ O ₂₄ : Bi ³⁺	51.6%	18
	$Sr_3Lu_2Ge_3O_{12}$: Bi^{3+}	57%	26
blue	Sr ₂ Y ₈ (SiO ₄) ₆ O ₂ : Bi ³⁺	74.8%	27
	La ₂ (Zn _{0.4} , Mg _{0.6})TiO ₆ : Bi ³⁺	75%	28
	Lu ₂ Ge ₂ O ₇ : Bi ³⁺	76%	29
	$SrGa_2B_2O_7: Bi^{3+}, Dy^{3+}$	64.5%	30
	Ca ₄ ZrGe ₃ O ₁₂ : Bi ³⁺	81.3%	31
	Ca ₄ ZrGe ₃ O ₁₂ : Bi ³⁺ , Sr ²⁺	82.0%	
	Ca ₄ ZrGe ₃ O ₁₂ : Bi ³⁺ , Si ⁴⁺	88.1%	
	SrCa, R. A., R:3+ A13+	060/2	This
	$SIGa_2D_2O_7$. DF, AF	9070	work
	BaGa2B2O7: Bi ³⁺ , Al ³⁺	99%	

Table S6. Quantum yield and emission color of Bi^{3+} doped phosphors

Variable-temperature photoluminescence

The thermal quenching activation energy was calculated by the following formula:³²

$$\ln\left(\frac{I_0}{I} - 1\right) = \ln C - \frac{\Delta E_a}{\kappa T} \tag{7}$$

where I_0 is the integrated emission intensity at room temperature, I is the integrated emission intensity at high temperature, C is constant, κ is the Boltzmann constant, T is the temperature, ΔE_a is the thermal quenching activation energy.

Figure S8. (A) Photoluminescence emission spectra of $Ba_{0.995}Ga_{1.60}B_2O_7$: 0.005Bi³⁺, 0.40Al³⁺ phosphor at different temperatures (30 ~ 200 °C); (B) Thermal stability and thermal quenching activation energy of $Ba_{0.995}Ga_{1.60}B_2O_7$: 0.005Bi³⁺, 0.40Al³⁺ phosphor.

Figure S9. (**A & B**) 1931 CIE and 1976 CIE chromaticity coordinates of SGBO: 0.01Bi³⁺ phosphor at different temperatures.

Temperature (°C)	SGBO: 0.01Bi ³⁺	SGBO: 0.01Bi ³⁺ , 0.50Al ³⁺
25	(0.1550, 0.0372)	(0.1550, 0.0373)
50	(0.1549, 0.0379)	(0.1549, 0.0380)
75	(0.1549, 0.0387)	(0.1548, 0.0390)
100	(0.1548, 0.0396)	(0.1547, 0.0399)
125	(0.1547, 0.0406)	(0.1546, 0.0409)
150	(0.1547, 0.0415)	(0.1546, 0.0418)
175	(0.1546, 0.0424)	(0.1545, 0.0428)
200	(0.1546, 0.0433)	(0.1545, 0.0437)

Table S7. 1931 CIE chromaticity coordinates of SGBO: 0.01Bi³⁺ and SGBO: 0.01Bi³⁺, 0.50Al³⁺ phosphors at different temperatures.

Figure S10. Fluorescence decay spectra and fluorescence lifetime of SGBO: 0.01Bi³⁺, 0.50Al³⁺ phosphors at room temperature and 200 °C.

Figure S11. (A) Emission spectra of the second heating process for $Sr_{0.99}Ga_{1.50}B_2O_7$: 0.01Bi³⁺, 0.50Al³⁺ phosphor between 30 ~ 200 °C (measured with F-7000, Hitachi, Japan); (**B**) Emission intensity change for the second heating process of $Sr_{0.99}Ga_{1.50}B_2O_7$: 0.01Bi³⁺, 0.50Al³⁺ phosphor between 30 ~ 200 °C.

Figure S12. (A) Emission spectra of the $Sr_{0.99}Ga_{1.50}B_2O_7$: $0.01Bi^{3+}$, $0.50Al^{3+}$ phosphor between 30 ~ 200 °C (measured with F-4600, Hitachi, Japan); (B) Emission intensity change of the $Sr_{0.99}Ga_{1.50}B_2O_7$: $0.01Bi^{3+}$, $0.50Al^{3+}$ phosphor between 30 ~ 200 °C.

Figure S13. (A) Emission spectra of the $Sr_{0.99}Ga_{1.50}B_2O_7$: $0.01Bi^{3+}$, $0.50Al^{3+}$ phosphor between 30 ~ 200 °C (measured with FS-5, Edinburgh, The UK); (B) Emission intensity change of the $Sr_{0.99}Ga_{1.50}B_2O_7$: $0.01Bi^{3+}$, $0.50Al^{3+}$ phosphor between 30 ~ 200 °C.

Figure S14. Variable temperature XRD patterns of $Sr_{0.99}Ga_{1.50}B_2O_7$: $0.01Bi^{3+}$, $0.50Al^{3+}$ phosphor (2 θ range is 29 ~ 32 °).

White LEDs performance

Table S8. 1931CIE color coordinates, color temperatures and color render index of the whiteLED using $Sr_{0.99}Ga_{1.50}B_2O_7$: $0.01Bi^{3+}$, $0.50Al^{3+}$ as the blue phosphor with the current range of20 - 300 mA.

Current (mA)	CIE (x, y)	Color temperature	Ra
		(K)	
20	(0.327,0.367)	5736	91.5
40	(0.327,0.367)	5753	90.9
60	(0.326,0.368)	5772	91
80	(0.325,0.365)	5787	91.3
100	(0.325,0.362)	5813	91.7
120	(0.324,0.3637)	5853	91.6
140	(0.323,0.360)	5871	91.9
160	(0.323,0.358)	5885	92.1
180	(0.323,0.357)	5903	91.6
200	(0.322,0.356)	5953	92.2
220	(0.321,0.354)	5990	92.5
240	(0.321,0.353)	6008	92.7
260	(0.320,0.352)	6038	92.8
280	(0.319,0.350)	6073	93.0
300	(0.319,0.349)	6102	93.0

Current (mA)	CIE (x, y)	Color temperature	Ra
		(K)	
20	(0.349,0.395)	4994	92.8
40	(0.349, 0.390)	4993	91.8
60	(0.350, 0.388)	4947	88.3
80	(0.349, 0.391)	4997	92.5
100	(0.349, 0.391)	4998	93.0
120	(0.349, 0.392)	4995	92.8
140	(0.349, 0.392)	4990	92.7
160	(0.350, 0.392)	4977	92.6
180	(0.350, 0.392)	4967	92.7
200	(0.350, 0.392)	4954	92.4
220	(0.351, 0.393)	4943	92.5
240	(0.352, 0.394)	4920	92.5
260	(0.352, 0.394)	4901	92.4
280	(0.353, 0.395)	4875	92.3
300	(0.354, 0.395)	4853	92.3

Table S9. 1931CIE color coordinates, color temperatures and color render index of the whiteLED using $Ba_{0.995}Ga_{1.60}B_2O_7$: 0.005Bi³⁺, 0.40Al³⁺ as the blue phosphor with the current rangeof 20 ~ 300 mA.

SI References

- 1. J. I. Pankove, *Optical Processes in Semiconductors*, Courier Corporation, 1975.
- 2. L. Kazmerski, *Polycrystalline and Amorphous Thin Films and Devices*, Elsevier, 2012.
- 3. G. Blasse, Energy transfer in oxidic phosphors, *Philips Res. Rep.*, 1969, 24, 131-144.
- 4. L. Van Uitert and L. Johnson, Energy transfer between rare-earth ions, *J. Chem. Phys.*, 1966, 44, 3514-3522.
- 5. D. A. Long, Raman Spectroscopy, *New York*, 1977, 1-12.
- P. L. Polavarapu, Ab initio vibrational Raman and Raman optical activity spectra, J. Phys. Chem., 1990, 94, 8106-8112.
- 7. E. Duval, Far-infrared and Raman vibrational transitions of a solid sphere: Selection rules, *Phys. Rev. B*, 1992, **46**, 5795.
- 8. R. Fei and L. Yang, Lattice vibrational modes and Raman scattering spectra of strained phosphorene, *Appl. Phys. Lett.*, 2014, **105**, 083120.
- S. Leyre, E. Coutino-Gonzalez, J. Joos, J. Ryckaert, Y. Meuret, D. Poelman, P. Smet, G. Durinck, J. Hofkens and G. Deconinck, Absolute determination of photoluminescence quantum efficiency using an integrating sphere setup, *Rev. Sci. Instrum.*, 2014, 85, 123115.
- F. Kang, X. Yang, M. Peng, L. Wondraczek, Z. Ma, Q. Zhang and J. Qiu, Red photoluminescence from Bi³⁺ and the influence of the oxygen-vacancy perturbation in ScVO₄: a combined experimental and theoretical study, *J. Phys. Chem. C*, 2014, **118**, 7515-7522.
- D. Liu, X. Yun, P. Dang, H. Lian, M. Shang, G. Li and J. Lin, Yellow/Orange-Emitting ABZn₂Ga₂O₇: Bi³⁺ (A= Ca, Sr; B= Ba, Sr) Phosphors: Optical Temperature Sensing and White Light-Emitting Diode Applications, *Chem. Mat.*, 2020, **32**, 3065-3077.
- J. Han, F. Pan, M. S. Molokeev, J. Dai, M. Peng, W. Zhou and J. Wang, Redefinition of crystal structure and Bi³⁺ yellow luminescence with strong near-ultraviolet excitation in La₃BWO₉: Bi³⁺ phosphor for white light-emitting diodes, *ACS Appl. Mater. Interfaces*, 2018, **10**, 13660-13668.
- G. Zhou, X. Jiang, J. Zhao, M. Molokeev, Z. Lin, Q. Liu and Z. Xia, Twodimensional-layered perovskite ALaTa₂O₇: Bi³⁺ (A= K and Na) phosphors with versatile structures and tunable photoluminescence, *ACS Appl. Mater. Interfaces*, 2018, 10, 24648-24655.

- F. Kang, M. Peng, Q. Zhang and J. Qiu, Abnormal anti-quenching and controllable multi-transitions of Bi³⁺ luminescence by temperature in a yellow-emitting LuVO₄: Bi³⁺ phosphor for UV-converted white LEDs, *Chem. Eur. J.*, 2014, **20**, 11522-11530.
- K. Li, H. Lian, M. Shang and J. Lin, A novel greenish yellow-orange red Ba₃Y₄O₉: Bi³⁺, Eu³⁺ phosphor with efficient energy transfer for UV-LEDs, *Dalton Trans.*, 2015, 44, 20542-20550.
- M. Puchalska, E. Zych and P. Bolek, Luminescences of Bi³⁺ and Bi²⁺ ions in Bi-doped CaAl₄O₇ phosphor powders obtained via modified Pechini citrate process, *J. Alloys Compd.*, 2019, **806**, 798-805.
- P. Dang, S. Liang, G. Li, Y. Wei, Z. Cheng, H. Lian, M. Shang, A. A. Al Kheraif and J. Lin, Full color luminescence tuning in Bi³⁺/Eu³⁺-doped LiCa₃MgV₃O₁₂ garnet phosphors based on local lattice distortion and multiple energy transfers, *Inorg. Chem.*, 2018, 57, 9251-9259.
- H. Guo, Z. Zheng, L. Teng, R. Wei and F. Hu, Tunable white-light emission and energy transfer in single-phase Bi³⁺, Eu³⁺ co-doped Ba₉Y₂Si₆O₂₄ phosphors for UV w-LEDs, *J. Lumin.*, 2019, **213**, 494-503.
- F. Kang, H. Zhang, L. Wondraczek, X. Yang, Y. Zhang, D. Y. Lei and M. Peng, Band-gap modulation in single Bi³⁺-doped yttrium–scandium–niobium vanadates for color tuning over the whole visible spectrum, *Chem. Mat.*, 2016, 28, 2692-2703.
- V. Tsiumra, A. Krasnikov, S. Zazubovich, Y. Zhydachevskyy, L. Vasylechko, M. Baran, L. Lipińska, M. Nikl and A. Suchocki, Crystal structure and luminescence studies of microcrystalline GGG: Bi³⁺ and GGG: Bi³⁺, Eu³⁺ as a UV-to-VIS converting phosphor for white LEDs, *J. Lumin.*, 2019, **213**, 278-289.
- C. Ji, Z. Huang, J. Wen, J. Zhang, X. Tian, H. He, L. Zhang, T.-H. Huang, W. Xie and Y. Peng, Blue-emitting Bi-doped double perovskite Gd₂ZnTiO₆ phosphor with nearultraviolet excitation for warm white light-emitting diodes, *J. Alloys Compd.*, 2019, 788, 1127-1136.
- B. Yuan, Y. Song, L. Kong, C. Dai and H. Zou, The sensitized luminescence and tunable color of single-component Sr₂MgSi₂O₇: Bi³⁺/Sm³⁺/Tb³⁺ phosphor via energy transfer for white-light emitting diodes, *Phys. B (Amsterdam, Neth.)*, 2018, **550**, 75-89.
- R. Cao, G. Quan, Z. Shi, T. Chen, Z. Luo, G. Zheng and Z. Hu, Synthesis and luminescence properties of La₂Zr₂O₇: R (R= Sm³⁺, Bi³⁺, Sm³⁺/Bi³⁺) phosphor, *J. Phys. Chem. Solids*, 2018, **118**, 109-113.

- S. Zhang, H. Luo, Z. Mu, J. Li, S. Guo, Z. Li, Q. Wang and F. Wu,
 Photoluminescence and tunable emissions of La₂(GeO₄)O: Bi³⁺, Eu³⁺ phosphor for ultraviolet converted light emitting diodes, *J. Alloys Compd.*, 2018, **757**, 423-433.
- L. Li, Y. Pan, Y. Huang, S. Huang and M. Wu, Dual-emissions with energy transfer from the phosphor Ca₁₄Al₁₀Zn₆O₃₅: Bi³⁺, Eu³⁺ for application in agricultural lighting, *J. Alloys Compd.*, 2017, **724**, 735-743.
- 26. Q. Wu, Y. Li, Y. Wang, H. Liu, S. Ye, L. Zhao, J. Ding and J. Zhou, A novel narrowband blue-emitting phosphor of Bi³⁺-activated Sr₃Lu₂Ge₃O₁₂ based on a highly symmetrical crystal structure used for WLEDs and FEDs, *Chem. Eng. J.*, 2020, **401**, 126130.
- K. Li, J. Fan, M. Shang, H. Lian and J. Lin, Sr₂Y₈(SiO₄)₆O₂: Bi³⁺/Eu³⁺: a single-component white-emitting phosphor via energy transfer for UV w-LEDs, *J. Mater. Chem. C*, 2015, **3**, 9989-9998.
- 28. T. Xie, L. Zhang, Y. Guo, X. Wang and Y. Wang, Tuning of Bi³⁺-related excitation and emission positions through crystal field modulation in the perovskite-structured La₂(Zn_x, Mg_{1-x})TiO₆ (0≤ x≤ 1): Bi³⁺ solid solution for white LEDs, *Ceram. Int.*, 2019, 45, 3502-3509.
- Q. Li, S. Zhang, W. Lin, W. Li, Y. Li, Z. Mu and F. Wu, A warm white emission of Bi³⁺-Eu³⁺ and Bi³⁺-Sm³⁺ codoping Lu₂Ge₂O₇ phosphors by energy transfer of Bi³⁺-sensitized Eu³⁺/Sm³⁺, *Spectrochim. Acta, Part A*, 2020, **228**, 117755.
- S. Yang, Y. Dai, Y. Shen, C. Duan, Q. Rao, H. Peng, F. Yang, Y. Shan and Q. Zhao, Blue emission from Sr_{0.98}Ga₂B₂O₇: 0.01 Bi³⁺, 0.01 Dy³⁺ phosphor with high quantum yield, *J. Alloys Compd.*, 2019, **810**, 151849.
- W. Yan, S. Chen, Y. Liu, Z. Gao, Y. Wei and G. Li, Giant Photoluminescence Improvement and Controllable Emission Adjustment in Bi³⁺-Activated Ca₄ZrGe₃O₁₂ Phosphors for High-Quality White Light-Emitting Diodes, *ACS Appl. Electron. Mater.*, 2019, 1, 1970-1980.
- S. Bhushan and M. Chukichev, Temperature dependent studies of cathodoluminescence of green band of ZnO crystals, *J. Mater. Sci. Lett.*, 1988, 7, 319-321.