Electronic Supplementary Information

Surface-dependent band structure variations and bond-level deviations of Cu₂O Chih-Shan Tan^{*a} and Michael H. Huang^{*b}

^aInstitute of Electronics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan

^bDepartment of Chemistry and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan

Table of contents

Fig. S1	Band structure and DOS diagram of the Cu ₂ O primitive cell	3
Fig. S2	Band structures of 1–9 layers of Cu ₂ O (100) planes obtained u	ising slabs
	from a $3 \times 3 \times 3$ Cu ₂ O supercell	4
Fig. S3	DOS diagrams of 1-9 layers of Cu ₂ O (100) planes obtained us	sing slabs
	from a $3 \times 3 \times 3$ Cu ₂ O supercell	4
Fig. S4	Slab structures of 1–9 layers of Cu ₂ O (100) planes	5
Fig. S5	Slab structures of 1–9 layers of Cu ₂ O (111) planes	5
Fig. S6	Slab structures of 1–9 layers of Cu ₂ O (110) planes	6
Fig. S7	Band structures of 1-9 layers of Cu ₂ O (111) planes obtained u	ising slabs
	from a $3 \times 3 \times 3$ Cu ₂ O supercell	6
Fig. S8	Band structures of 1-9 layers of Cu ₂ O (110) planes obtained u	ising slabs
	from a $3 \times 3 \times 3$ Cu ₂ O supercell	7
Fig. S9	Band structures of 1-9 layers of Cu ₂ O (111) planes obtained u	ising slabs
	from a $1 \times 1 \times 1$ Cu ₂ O supercell	8
Fig. S10	DOS diagrams of 1-9 layers of Cu ₂ O (111) planes obtained us	sing slabs
	from a $1 \times 1 \times 1$ Cu ₂ O supercell	9
Fig. S11	Band structures of 1–9 layers of $Cu_2O(111)$ planes obtained u	ising slabs
	from a $2 \times 2 \times 2$ Cu ₂ O supercell	9
Fig. S12	DOS diagrams of 1-9 layers of Cu ₂ O (111) planes obtained us	sing slabs
	from a $2 \times 2 \times 2$ Cu ₂ O supercell	10
Fig. S13	Band structures of 1–9 layers of $Cu_2O(111)$ planes obtained u	ising slabs
	from a $4 \times 4 \times 4$ Cu ₂ O supercell	10
Fig. S14	DOS diagrams of 1-9 layers of Cu ₂ O (111) planes obtained us	sing slabs
	from a $4 \times 4 \times 4$ Cu ₂ O supercell	11
Fig. S15	Band structures of 1–9 layers of $Cu_2O(111)$ planes obtained u	ising slabs
	from a $5 \times 5 \times 5$ Cu ₂ O supercell	11
Fig. S16	DOS diagrams of 1-9 layers of Cu ₂ O (111) planes obtained us	sing slabs
	from a $5 \times 5 \times 5$ Cu ₂ O supercell	12
Fig. S17	Partial DOS diagrams of 1-3 layers of Cu ₂ O (100), (110), and	(111)

Plan	es	13
Table S1	Enthalpy variations using different starting points to calculate band	
	structures of 1 layer of Cu ₂ O (111) plane	3
Table S2	Band gap variation with respect to the number of plane layers	7
Table S3	Cu ₂ O layer thicknesses vs. the number of plane layers	8
Table S4	Average Cu–O bond length variation with respect to the number of	
	plane layers	12
Table S5	Cu–O bond distortion percentages	13

Fig. S1 (a) Band structure and (b) DOS diagram of the Cu_2O primitive cell. (c) Cu_2O primitive cell with Brillouin zone. Pink spheres are O atoms and red spheres are Cu atoms.

Cu ₂ O 3x3x3 1 layer	Enthalpy (eV)
Slab starts at 0	-6775.50
Slab starts at 0.167	-6757.08
Slab starts at 0.25	-6757.08
Slab starts at 0.333	-6775.50
Slab starts at 0.5	-6757.08
Slab starts at 0.583	-6757.08
Slab starts at 0.667	-6775.50
Slab starts at 0.883	-6757.09
Slab starts at 0.917	-6757.09

Table S1 Enthalpy variations using different starting points to calculate band structures of 1 layer of Cu₂O (111) plane from a $3 \times 3 \times 3$ supercell.

Fig. S2 Band structures of (a) 1, (b) 2, (c) 3, (d) 4, (e) 5, (f) 6, (g) 7, (h) 8, and (i) 9 layers of Cu_2O (100) planes obtained using slabs from a $3 \times 3 \times 3 Cu_2O$ supercell.

Fig. S3 DOS diagrams of (a) 1, (b) 2, (c) 3, (d) 4, (e) 5, (f) 6, (g) 7, (h) 8, and (i) 9 layers of Cu_2O (100) planes obtained using slabs from a $3 \times 3 \times 3 Cu_2O$ supercell.

Fig. S4 Slab structures of 1-9 layers of Cu_2O (100) planes.

Fig. S5 Slab structures of 1-9 layers of $Cu_2O(111)$ planes.

Fig. S6 Slab structures of 1–9 layers of Cu₂O (110) planes.

Fig. S7 Band structures of (a) 1, (b) 2, (c) 3, (d) 4, (e) 5, (f) 6, (g) 7, (h) 8, and (i) 9 layers of Cu_2O (111) planes obtained using slabs from a $3 \times 3 \times 3 Cu_2O$ supercell.

Fig. S8 Band structures of (a) 1, (b) 2, (c) 3, (d) 4, (e) 5, (f) 6, (g) 7, (h) 8, and (i) 9 layers of Cu₂O (110) planes obtained using slabs from a $3 \times 3 \times 3$ Cu₂O supercell. Only an energy range of 5 to -5 eV is shown.

Band gap (eV)	1 layer	2 layers	3 layers	4 layers	5 layers	6 layers	7 layers	8 layers	9 layers
(111) slab from 5x5x5 supercell	0	0	1.787	0.118	0	1.787	0.216	0	1.787
(111) slab from 4x4x4 supercell	0	0	1.787	0.118	0	1.787	0.216	0	1.787
(111) slab from 3x3x3 supercell	0	0	1.787	0.118	0	1.787	0.216	0	1.787
(111) slab from 2x2x2 supercell	0	0	1.787	0.118	0	1.787	0.216	0	1.787
(111) slab from 1x1x1 supercell	0	0	1.787	0.118	0	1.787	0.216	0	1.787
(110) slab from 3x3x3 supercell	0	1.787	0.167	1.787	0.277	1.787	0.294	1.787	0.297
(100) slab from 3x3x3 supercell	1.787	1.787	1.787	1.787	1.787	1.787	1.787	1.787	1.787

Table S2 Band gap variation with respect to the number of plane layers.

Cu ₂ O layer thickness (Å)	1 layer	2 layers	3 layers	4 layers	5 layers	6 layers	7 layers	8 layers	9 layers
(111)	2.46	4.92	7.38	9.84	12.3	14.76	17.22	19.68	22.14
(110)	3.02	6.04	9.06	12.08	15.10	18.12	21.14	24.16	27.18
(100)	4.27	8.54	12.81	17.08	21.35	25.62	29.89	34.16	38.43

Table S3 Cu₂O layer thicknesses vs. the number of plane layers.

Fig. S9 Band structures of (a) 1, (b) 2, (c) 3, (d) 4, (e) 5, (f) 6, (g) 7, (h) 8, and (i) 9 layers of Cu_2O (111) planes obtained using slabs from a $1 \times 1 \times 1 Cu_2O$ supercell.

Fig. S10 DOS diagrams of (a) 1, (b) 2, (c) 3, (d) 4, (e) 5, (f) 6, (g) 7, (h) 8, and (i) 9 layers of Cu₂O (111) planes obtained using slabs from a $1 \times 1 \times 1$ Cu₂O supercell.

Fig. S11 Band structures of (a) 1, (b) 2, (c) 3, (d) 4, (e) 5, (f) 6, (g) 7, (h) 8, and (i) 9 layers of Cu_2O (111) planes obtained using slabs from a $2 \times 2 \times 2$ Cu_2O supercell.

Fig. S12 DOS diagrams of (a) 1, (b) 2, (c) 3, (d) 4, (e) 5, (f) 6, (g) 7, (h) 8, and (i) 9 layers of Cu₂O (111) planes obtained using slabs from a $2 \times 2 \times 2$ Cu₂O supercell.

Fig. S13 Band structures of (a) 1, (b) 2, (c) 3, (d) 4, (e) 5, (f) 6, (g) 7, (h) 8, and (i) 9 layers of Cu_2O (111) planes obtained using slabs from a $4 \times 4 \times 4 Cu_2O$ supercell.

Fig. S14 DOS diagrams of (a) 1, (b) 2, (c) 3, (d) 4, (e) 5, (f) 6, (g) 7, (h) 8, and (i) 9 layers of Cu_2O (111) planes obtained using slabs from a $4 \times 4 \times 4 Cu_2O$ supercell.

Fig. S15 Band structures of (a) 1, (b) 2, (c) 3, (d) 4, (e) 5, (f) 6, (g) 7, (h) 8, and (i) 9 layers of Cu_2O (111) planes obtained using slabs from a $5 \times 5 \times 5$ Cu_2O supercell.

Fig. S16 DOS diagrams of (a) 1, (b) 2, (c) 3, (d) 4, (e) 5, (f) 6, (g) 7, (h) 8, and (i) 9 layers of Cu_2O (111) planes obtained using slabs from a $5 \times 5 \times 5$ Cu_2O supercell.

Table S4 Average Cu–O bond length variation with respect to the number of plane layers.

Cu-O average bond length (Å)	1 layer	2 layers	3 layers	4 layers	5 layers	6 layers	7 layers	8 layers	9 layers
(111) slab from 5 x 5 x 5 super cell	1.88	1.88	1.85	1.84	1.86	1.85	1.85	1.86	1.85
(111) slab from 4 x 4 x 4 super cell	1.88	1.88	1.85	1.84	1.86	1.85	1.85	1.86	1.85
(111) slab from 3 x 3 x 3 super cell	1.88	1.88	1.85	1.84	1.86	1.85	1.85	1.86	1.85
(111) slab from 2 x 2 x 2 super cell	1.88	1.88	1.85	1.84	1.86	1.85	1.85	1.86	1.85
(111) slab from 1 x 1 x 1 super cell	1.88	1.88	1.85	1.84	1.86	1.85	1.85	1.86	1.85
(110) slab from 3 x 3 x 3 super cell	1.93	1.85	1.87	1.85	1.87	1.85	1.87	1.85	1.86
(100) slab from 3 x 3 x 3 super cell	1.85	1.85	1.85	1.85	1.85	1.85	1.85	1.85	1.85

Cu–O bond distortion (%)	1 layer	2 layers	3 layers	4 layers	5 layers	6 layers	7 layers	8 layers	9 layers
(111) Slab from 5x5x5 super cell	1.684	1.828	0	-0.278	0.700	0	0.018	0.485	0
(111) Slab from 4x4x4 super cell	1.684	1.830	0	-0.277	0.606	0	0.019	0.451	0
(111) Slab from 3x3x3super cell	1.683	1.828	0	-0.279	0.445	0	0.023	0.394	0
(111) Slab from 2x2x2 super cell	1.684	1.836	0	-0.279	0.716	0	0.023	0.479	0
(111) Slab from 1x1x1 super cell	1.684	1.829	0	-0.278	0.652	0	0.019	0.440	0
(110) Slab from 3x3x3super cell	4.276	0	1.059	0	1.353	0	0.973	0	0.697
(100) Slab from 3x3x3super cell	0	0	0	0	0	0	0	0	0

Table S5 Cu–O bond distortion percentages with respect to the number of plane layers.

Fig. S17 Partial DOS diagrams of 1–3 layers of Cu₂O (a–c) (100), (d–e) (110), and (g–i) (111) planes showing the contributions by the frontier orbitals of oxygen atoms.