Supporting Information

## A New Tunnel-Type V<sub>4</sub>O<sub>9</sub> Cathode for High Power Density Aqueous Zinc Ion Batteries

*Qiaoran Wang, Tianjiang Sun, Shibing Zheng, Lin Li, Tao Ma, and Jing Liang*\* E-mail: <u>liangjing@nankai.edu.cn</u>

## Table of Contents

| Fig. S1              |
|----------------------|
| Fig. S2              |
| Fig. S3              |
| Fig. S4              |
| Fig. S5              |
| Fig. S6              |
| Fig. S7              |
| Fig. S8              |
| Fig. S910            |
| Fig. S1011           |
| Fig. S1112           |
| Fig. S1213           |
| Fig. S1314           |
| Fig. S1414           |
| Fig S1515            |
| Table S115           |
| Table S216           |
| Table S316           |
| Notes and references |



Fig. S1. Crystal structure along the (a) c-axis, (b) b-axis and (c) a-axis of the orthorhombic  $V_4O_9$ .



Fig. S2. FTIR spectrum of  $V_4O_9$  at attenuated total reflection mode.



Fig. S3. Raman scattering of  $V_4O_9$  powder.



Fig. S4. (a) XRD and (b) SEM of  $V_4O_9$  electrode after 500th at 20C



**Fig. S5.** Electrochemical performance of  $Zn/V_4O_9$  with 3M ZnSO4 electrolyte. (a) The first three cyclic voltammetry (CV) profile of  $V_4O_9$  at 0.5 mV s<sup>-1</sup>. (b) Cycle performance at 1 C. (c) Charge/discharge profiles at 0.5 C, 1 C, 5 C, 10 C, 20 C. (d) Cycle performance at 20 C.



**Fig. S6.** (a) Percentages of capacitive and diffusion contributions at different scan rates. Contribution ratios of the capacitive capacities and diffusion-controlled capacities at (b)  $0.3 \text{ mV s}^{-1}$ , (c)  $0.4 \text{ mV s}^{-1}$  and (d)  $0.5 \text{ mV s}^{-1}$ .



Fig. S7. In-situ XRD of  $V_4O_9$  electrode at the first two cycles.



Fig. S8. Galvanostatic voltage–capacity profiles for  $V_4O_9$  cycled in electrolytes withoutand with 1% content in 0.2 M Zn(CF<sub>3</sub>SO<sub>3</sub>)<sub>2</sub> acetonitrile (anhydrous). Each profilecorrespondstothe20thcycle.



Fig. S9. XRD of  $V_4O_9$  electrode at 5th, 10th, 20th at 1C.



Fig. S10. XPS image of  $V_4O_9$  electrodes at the initial, full discharging, and charging states.



Fig. S11. Ex-situ XPS image of O 1s acquired from the pristine, full discharging, and charging  $V_4O_9$  electrodes.



Fig. S12. Ex-situ XPS image of S 2p acquired from the pristine, full discharging and charging  $V_4O_9$  electrodes.



Fig. S13. SEM images of  $V_4O_9$  electrodes at the (a) initial, (b) full discharging, and (c) charging states.



Fig. S14. EDX pattern of  $V_4O_9$  electrode at the full discharging and charging states.



**Fig S15.** SEM of electrodes at the discharge state of 0.3 V without (a) and with (b) the treatment of dilute hydrochloric acid.

|         | Discharge |                      | Charge |                   |  |
|---------|-----------|----------------------|--------|-------------------|--|
| Element | wt%       | Atomic<br>percentage | wt%    | Atomic percentage |  |
| С       | 18.00     | 34.89                | 29.50  | 50.29             |  |
| 0       | 20.31     | 29.55                | 17.78  | 22.75             |  |
| F       | 11.73     | 14.37                | 8.82   | 9.50              |  |
| S       | 2.73      | 1.98                 | 0.00   | 0.00              |  |
| V       | 23.76     | 10.86                | 41.89  | 16.83             |  |
| Zn      | 23.46     | 8.35                 | 2.01   | 0.63              |  |
| Total:  | 100.00    | 100.00               | 100.00 | 100.00            |  |

**Table S1.** Element distribution of  $V_4O_9$  electrode at the full discharging and charging states.

|         | Without acid treatment |        | With acid treatment    |        |  |
|---------|------------------------|--------|------------------------|--------|--|
| Element | Apparent concentration | wt%    | Apparent concentration | wt%    |  |
| С       | 1.90                   | 15.32  | 6.64                   | 30.63  |  |
| 0       | 4.15                   | 17.73  | 1.72                   | 11.58  |  |
| F       | 4.39                   | 10.06  | 4.46                   | 14.25  |  |
| S       | 0.66                   | 1.25   | 0.00                   | 0.00   |  |
| V       | 15.83                  | 28.07  | 23.03                  | 42.95  |  |
| Zn      | 14.87                  | 27.57  | 0.30                   | 0.60   |  |
| Total:  |                        | 100.00 |                        | 100.00 |  |

**Table S2** Element distribution of  $V_4O_9$  at the discharge state of 0.3 V without and with the treatment of dilute hydrochloric acid.

**Table S3.** Electrochemical performance comparisons of  $V_4O_9$  with other reported aqueous zinc ion batteries.

| Cathode                                 | Electrolyte                                              | Voltage<br>window | Specific<br>capacity/<br>Rate<br>performance                                                                                                                                            | Cycling<br>performance                                                    | ref |
|-----------------------------------------|----------------------------------------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----|
| V <sub>2</sub> O <sub>5</sub>           | 3 M<br>Zn(CF <sub>3</sub> SO <sub>3</sub> ) <sub>2</sub> | 0.2-1.6 V         | $\begin{array}{c} 470 \text{ mA h } \text{g}^{-1} \text{ at} \\ 0.2 \text{ A } \text{g}^{-1} \\ 396 \text{ mA h } \text{g}^{-1} \text{ at} \\ 8.0 \text{ A } \text{g}^{-1} \end{array}$ | 91.1% capacity<br>retention over<br>4000 cycles at 5<br>A g <sup>-1</sup> | 1   |
| V <sub>2</sub> O <sub>5</sub> /Graphene | 3 M ZnSO <sub>4</sub>                                    | 0.2-1.8 V         | 489 mA h g <sup>-1</sup> at<br>0.1 A g <sup>-1</sup><br>123 mA h g <sup>-1</sup> at<br>70 A g <sup>-1</sup>                                                                             | 80% capacity<br>retention after<br>3500 cycles at<br>30A g <sup>-1</sup>  | 2   |
| Porous V <sub>2</sub> O <sub>5</sub>    | 3 M<br>Zn(CF <sub>3</sub> SO <sub>3</sub> ) <sub>2</sub> | 0.5-1.5 V         | $\begin{array}{c} 226 \text{ mA h } g^{-1} \text{ at } 1 \\ C \\ 104 \text{ mA h } g^{-1} \text{ at} \\ 10 \text{ C} \end{array}$                                                       | 81% capacity<br>retention after<br>500 cycles at 2 C                      | 3   |

|                                                     |                                                                                           |               | $452 \text{ mA h g}^{-1}$ at                          | 92% capacity         |    |
|-----------------------------------------------------|-------------------------------------------------------------------------------------------|---------------|-------------------------------------------------------|----------------------|----|
| V <sub>2</sub> O <sub>5</sub><br>nanosheets         | 3 M<br>Zn(CF <sub>3</sub> SO <sub>3</sub> ) <sub>2</sub>                                  | 0.3-1.6 V     | $0.1 \mathrm{~A~g^{-1}}$                              | retention after      | 4  |
|                                                     |                                                                                           |               | $268 \text{ mA h g}^{-1}$ at                          | 5000 cycles at       | +  |
|                                                     |                                                                                           |               | $30 \text{ A g}^{-1}$                                 | 10A g <sup>-1</sup>  |    |
|                                                     |                                                                                           |               | $375.2 \text{ mA h g}^{-1} \text{ at}$                | 97.6% capacity       |    |
| PANI-                                               | 3 M                                                                                       |               | $1 \text{ A g}^{-1}$                                  | retention after      |    |
| intercalated                                        | $Zn(CF_3SO_3)_2$                                                                          | 0.2-1.6 V     | $1971 \text{ mA h} \sigma^{-1} \text{ at}$            | 2000 cycles at       | 5  |
| $V_2O_5$                                            |                                                                                           |               | $20 \text{ A } \text{g}^{-1}$                         | 2004 g <sup>-1</sup> |    |
|                                                     |                                                                                           | 0.3-1.5 V     | $375 \text{ mA h } \sigma^{-1} \text{ at}$            | 91.2% capacity       |    |
|                                                     | 3 M 7n                                                                                    |               | 0.25 C                                                | retention after      |    |
| VO <sub>2</sub> (B)                                 | $(CE_1SO_1)$                                                                              |               | $171 \text{ mA h } \sigma^{-1} \text{ at}$            | 300 cycles at 100    | 6  |
|                                                     | $(CF_3SO_3)_2$                                                                            |               | 1/1 IIIA II g * at                                    | 500  cycles at  100  |    |
|                                                     |                                                                                           |               | 300 C                                                 | mA g '               |    |
|                                                     |                                                                                           |               | $408 \text{ mA h g}^{-1} \text{ at}$                  | an attenuation       |    |
| VO <sub>2</sub> (D)                                 | 3 M ZnSO <sub>4</sub>                                                                     | 0.2-1.6 V     | 0.1 A g <sup>1</sup>                                  | rate of 0.0023%      | 7  |
|                                                     |                                                                                           |               | $200 \text{ mA h g}^{-1} \text{ at}$                  | per cycle            |    |
|                                                     |                                                                                           |               | 20 A g <sup>-1</sup>                                  |                      |    |
|                                                     |                                                                                           |               | 357 mA h g <sup>-1</sup> at                           | 76% capacity         |    |
| VO <sub>2</sub> (A)                                 | 3 M Zn                                                                                    | 0 2-1 4 V     | 0.1 A g <sup>-1</sup>                                 | retention over       | 8  |
| (02(11)                                             | (CF <sub>3</sub> SO <sub>3</sub> ) <sub>2</sub>                                           | 0.2-1.4 V     | 165 mA h g <sup>-1</sup> at                           | 500 cycles at 5 A    |    |
|                                                     |                                                                                           |               | 10 A g <sup>-1</sup>                                  | g-1.                 |    |
|                                                     | 3 M ZnSO <sub>4</sub>                                                                     |               | 396 mA h g <sup><math>-1</math></sup> at 89% capacity | 89% capacity         |    |
| VO .0 75H O                                         |                                                                                           | 0.4-1.4 V     | $0.05 \mathrm{~A~g^{-1}}$                             | retention over       | 9  |
| VO2'0.75H2O                                         |                                                                                           |               | 88 mA h g <sup>-1</sup> at 50                         | 1000 cycles at 10    | -  |
|                                                     |                                                                                           |               | A $g^{-1}$                                            | $A g^{-1}$           |    |
|                                                     | 3 M<br>Zn(CF <sub>3</sub> SO <sub>3</sub> ) <sub>2</sub>                                  | 0.2–1.4<br>V. | 456 mA h g <sup>-1</sup> at                           | 72% capacity         | 10 |
|                                                     |                                                                                           |               | $100 \text{ mA g}^{-1}$                               | retention over       |    |
| VO <sub>2</sub> (B)/RGO                             |                                                                                           |               | 292 mA h $g^{-1}$ at 5                                | 1600 cycles at       |    |
|                                                     |                                                                                           |               | $A g^{-1}$                                            | 5A g <sup>-1</sup>   |    |
|                                                     | 3 M<br>Zn(CF <sub>3</sub> SO <sub>3</sub> ) <sub>2</sub>                                  | 0.3-1.3V      | $448 \text{ mA h g}^{-1} \text{ at}$                  | 84.5% capacity       | 11 |
|                                                     |                                                                                           |               | $0.5 \text{ A s}^{-1}$                                | retention over       |    |
| VO <sub>2</sub> -PEDOT                              |                                                                                           |               | $231 \text{ mA h } \text{g}^{-1}$ at                  | 1000  cycles at 5    |    |
|                                                     |                                                                                           |               | $10 \text{ A } \text{g}^{-1}$                         | $\Delta \sigma^{-1}$ |    |
|                                                     |                                                                                           |               | $423.8 \text{ mA h } \text{g}^{-1} \text{ at}$        | 94.3% capacity       |    |
|                                                     | 3 M<br>Zn(CF <sub>3</sub> SO <sub>3</sub> ) <sub>2</sub>                                  | 0.2-1.6 V     | $-1 \Lambda q^{-1}$                                   | retention after      | 12 |
| $H_2V_3O_8$                                         |                                                                                           |               | 0.1  Ag                                               | 1000 avalas at 5     |    |
|                                                     |                                                                                           |               | 50 A c <sup>-1</sup>                                  |                      |    |
|                                                     |                                                                                           |               | 3.0 A g                                               |                      |    |
| V <sub>3</sub> O <sub>7</sub> ·H <sub>2</sub> O/rGO | 1 M ZnSO <sub>4</sub>                                                                     | 0.3-1.5 V     | 20/ mA n g 1                                          | 79% capacity         |    |
|                                                     |                                                                                           |               | under I C                                             | retention over       | 13 |
|                                                     |                                                                                           |               | $85 \text{ mA h g}^{-1} \text{ under}$                | 1000 cycles at 5     |    |
|                                                     |                                                                                           |               | 40 C                                                  | C                    |    |
| V <sub>6</sub> O <sub>13</sub>                      |                                                                                           |               | $360 \text{ mA h g}^{-1} \text{ at}$                  | 92% capacity         |    |
|                                                     | $\begin{array}{c} 3 \text{ M} \\ \text{Zn}(\text{CF}_3\text{SO}_3)_2 \end{array} \right)$ | 0.2-1.5 V     | 0.2 A g <sup>-1</sup>                                 | retention over       | 14 |
|                                                     |                                                                                           |               | 145 mA h $g^{-1}$ at                                  | 2000 cycles at 4     |    |
|                                                     |                                                                                           |               | 24.0 A g <sup>-1</sup>                                | A g <sup>-1</sup>    |    |

| Od-V <sub>6</sub> O <sub>13</sub>                   | 3 M<br>Zn(CF <sub>3</sub> SO <sub>3</sub> ) <sub>2</sub>      |           | 401 mA h $g^{-1}$ at                    | 86% capacity                   |      |
|-----------------------------------------------------|---------------------------------------------------------------|-----------|-----------------------------------------|--------------------------------|------|
|                                                     |                                                               | 0.2-1.5 V | $0.2 \ { m A g^{-1}}$                   | retention after                | 15   |
|                                                     |                                                               |           | $223 \text{ mA h g}^{-1} \text{ at } 5$ | 2000 cycles at 2               |      |
|                                                     |                                                               |           | A $g^{-1}$                              | A g <sup>-1</sup>              |      |
|                                                     | 3 M                                                           | 0.2-1.4 V | 395 mA h $g^{-1}$ at                    | 87% capacity                   |      |
| VORUO                                               |                                                               |           | $0.1 \mathrm{~A~g^{-1}}$                | retention after                | 16   |
| v <sub>6</sub> O <sub>13</sub> ·nH <sub>2</sub> O   | $\operatorname{Zn}(\operatorname{CF}_3\operatorname{SO}_3)_2$ |           | 97 mA h g <sup>-1</sup> at 20           | 1000 cycles at                 | 10   |
|                                                     |                                                               |           | A $g^{-1}$                              | $5 \mathrm{A} \mathrm{g}^{-1}$ |      |
|                                                     | 3 M<br>Zn(CF <sub>3</sub> SO <sub>3</sub> ) <sub>2</sub>      |           | 471 mA h $g^{-1}$ at                    | 80% capacity                   |      |
| CO <sub>2</sub> modified                            |                                                               | 02151     | $0.1 \mathrm{~A~g^{-1}}$                | retention after                | 17   |
| V <sub>6</sub> O <sub>13</sub>                      |                                                               | 0.3-1.5 V | 175 mA h g <sup>-1</sup> at             | 4000 cycles at 2               |      |
|                                                     |                                                               |           | $10 \text{ A g}^{-1}$                   | A $g^{-1}$                     |      |
|                                                     | 3M<br>Zn(CF <sub>3</sub> SO <sub>3</sub> ) <sub>2</sub>       |           | 164.5 mA h g <sup>-1</sup> at           | 80.1% capacity                 |      |
| V O 12U O                                           |                                                               | 0.7-1.7 V | $0.2 ~{ m A~g^{-1}}$                    | retention after                | 18   |
| V <sub>10</sub> O <sub>24</sub> ·12H <sub>2</sub> O |                                                               |           | $80.0 \text{ mA h g}^{-1}$ at           | 3000 cycles at 10              |      |
|                                                     |                                                               |           | $10 \text{ A g}^{-1}$                   | A g <sup>-1</sup> ,            |      |
|                                                     | 3 M<br>Zn(CF <sub>3</sub> SO <sub>3</sub> ) <sub>2</sub>      | 0.3-1.5 V | $350 \text{ mA h g}^{-1}$ at            | 90% capacity                   |      |
| NO OC                                               |                                                               |           | $100 \text{ mA g}^{-1}$                 | retention over                 | 19   |
| $V_2O_3(a)C$                                        |                                                               |           | $250 \text{ mA h g}^{-1} \text{ at } 2$ | 4000 cycles at 5               |      |
|                                                     |                                                               |           | A $g^{-1}$                              | A $g^{-1}$                     |      |
| $V_4O_9$                                            | 3 M<br>Zn(CF <sub>3</sub> SO <sub>3</sub> ) <sub>2</sub>      | 0.3-1.5 V | 420 mA h g <sup>-1</sup> at             | 78.8% capacity                 |      |
|                                                     |                                                               |           | 0.5 C                                   | retention over                 | This |
|                                                     |                                                               |           | 234.4 mA h g <sup>-1</sup> at           | 1000 cycles at 20              | work |
|                                                     |                                                               |           | 50 C                                    | С                              |      |

## Notes and references

- N. Zhang, Y. Dong, M. Jia, X. Bian, Y. Wang, M. Qiu, J. Xu, Y. Liu, L. Jiao and F. Cheng, Rechargeable Aqueous Zn–V<sub>2</sub>O<sub>5</sub> Battery with High Energy Density and Long Cycle Life, *ACS Energy Lett.*, 2018, 3, 1366-1372.
- X. Wang, Y. Li, S. Wang, F. Zhou, P. Das, C. Sun, S. Zheng and Z. S. Wu, 2D Amorphous V<sub>2</sub>O<sub>5</sub>/Graphene Heterostructures for High-Safety Aqueous Zn-Ion Batteries with Unprecedented Capacity and Ultrahigh Rate Capability, *Adv. Energy Mater.*, 2020, **10**, 2000081.
- X. Chen, L. Wang, H. Li, F. Cheng and J. Chen, Porous V<sub>2</sub>O<sub>5</sub> nanofibers as cathode materials for rechargeable aqueous zinc-ion batteries, *J. Energy Chem.*, 2019, 38, 20-25.
- X. Wang, L. Ma and J. Sun, Vanadium Pentoxide Nanosheets in-Situ Spaced with Acetylene Black as Cathodes for High-Performance Zinc-Ion Batteries, ACS Appl. Mater. Interfaces, 2019, 11, 41297-41303.
- S. Liu, H. Zhu, B. Zhang, G. Li, H. Zhu, Y. Ren, H. Geng, Y. Yang, Q. Liu and C. C. Li, Tuning the Kinetics of Zinc-Ion Insertion/Extraction in V<sub>2</sub>O<sub>5</sub> by In Situ Polyaniline Intercalation Enables Improved Aqueous Zinc-Ion Storage Performance, *Adv. Mater.*, 2020, **32**, e2001113.
- J. Ding, Z. Du, L. Gu, B. Li, L. Wang, S. Wang, Y. Gong and S. Yang, Ultrafast Zn<sup>2+</sup> Intercalation and Deintercalation in Vanadium Dioxide, *Adv. Mater.*, 2018, 30, 6.
- L. Chen, Z. Yang and Y. Huang, Monoclinic VO<sub>2</sub>(D) hollow nanospheres with super-long cycle life for aqueous zinc ion batteries, *Nanoscale*, 2019, 11, 13032-13039.
- 8. R. Li, X. Yu, X. Bian and F. Hu, Preparation and electrochemical performance of VO<sub>2</sub>(A) hollow spheres as a cathode for aqueous zinc ion batteries, *RSC Adv.*, 2019, **9**, 35117-35123.
- N. Liu, X. Wu, L. Fan, S. Gong, Z. Guo, A. Chen, C. Zhao, Y. Mao, N. Zhang and K. Sun, Intercalation Pseudocapacitive Zn<sup>2+</sup> Storage with Hydrated Vanadium Dioxide toward Ultrahigh Rate Performance, *Adv. Mater.*, 2020, **32**, e1908420.
- F. Cui, J. Zhao, D. Zhang, Y. Fang, F. Hu and K. Zhu, VO<sub>2</sub>(B) nanobelts and reduced graphene oxides composites as cathode materials for low-cost rechargeable aqueous zinc ion batteries, *Chem. Eng. J.*, 2020, **390**, 124118.
- X. Liu, G. Xu, Q. Zhang, S. Huang, L. Li, X. Wei, J. Cao, L. Yang and P. K. Chu, Ultrathin hybrid nanobelts of single-crystalline VO<sub>2</sub> and Poly(3,4-ethylenedioxythiophene) as cathode materials for aqueous zinc ion batteries with large capacity and high-rate capability, *J. Power Sources*, 2020, 463, 228223.
- P. He, Y. Quan, X. Xu, M. Yan, W. Yang, Q. An, L. He and L. Mai, High-Performance Aqueous Zinc-Ion Battery Based on Layered H<sub>2</sub>V<sub>3</sub>O<sub>8</sub>Nanowire Cathode, *Small*, 2017, 13.
- C. Shen, X. Li, N. Li, K. Xie, J. G. Wang, X. Liu and B. Wei, Graphene-Boosted, High-Performance Aqueous Zn-Ion Battery, ACS Appl. Mater. Interfaces, 2018, 10, 25446-25453.
- J. Shin, D. S. Choi, H. J. Lee, Y. Jung and J. W. Choi, Hydrated Intercalation for High-Performance Aqueous Zinc Ion Batteries, *Adv. Energy Mater.*, 2019, 9, 1900083.
- M. Liao, J. Wang, L. Ye, H. Sun, Y. Wen, C. Wang, X. Sun, B. Wang and H. Peng, A Deep-Cycle Aqueous Zinc-Ion Battery Containing an Oxygen-Deficient Vanadium Oxide Cathode, *Angew. Chem., Int. Ed.*, 2020, 59, 2273-2278.
- J. Lai, H. Zhu, X. Zhu, H. Koritala and Y. Wang, Interlayer-Expanded V<sub>6</sub>O<sub>13</sub>·nH<sub>2</sub>O Architecture Constructed for an Advanced Rechargeable Aqueous Zinc-Ion Battery, *ACS Appl. Energy Mater.*, 2019, 2, 1988-1996.

- W. Shi, B. Yin, Y. Yang, M. B. Sullivan, J. Wang, Y. W. Zhang, Z. G. Yu, W. S. V. Lee and J. Xue, Unravelling V<sub>6</sub>O<sub>13</sub> Diffusion Pathways via CO<sub>2</sub> Modification for High-Performance Zinc Ion Battery Cathode, ACS Nano, 2021, 15, 1273-1281.
- T. Wei, Q. Li, G. Yang and C. Wang, High-rate and durable aqueous zinc ion battery using dendritic V<sub>10</sub>O<sub>24</sub>·12H<sub>2</sub>O cathode material with large interlamellar spacing, *Electrochim. Acta*, 2018, **287**, 60-67.
- Y. Ding, Y. Peng, S. Chen, X. Zhang, Z. Li, L. Zhu, L. E. Mo and L. Hu, Hierarchical Porous Metallic V<sub>2</sub>O<sub>3</sub>@C for Advanced Aqueous Zinc-Ion Batteries, *ACS Appl. Mater. Interfaces*, 2019, 11, 44109-44117.