Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2021

Supporting Information

Olivine-type cadmium germanate: A new sensing semiconductor for the detection of formaldehyde at ppb level

Jiayu Li,^a Qihua Liang,^a Bo Zhang,^b Hui Chen,^a Xinhua Tian,^a Meihong Fan,^a Yunjia

Guo,^a Ni Bai,^c Xiaoxin Zou^a and Guo-Dong Li *^a

^a State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of

Chemistry, Jilin University, Changchun 130012, P. R. China

^b International Center of Future Science, Jilin University, Changchun13012, P. R. China

^c School of Mechanical and Metallurgical Engineering, Jiangsu University of Science and Technology, Zhangjiagang 215600, P. R. China

*Corresponding Author:

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China

E-mail address: lgd@jlu.edu.cn

Fig. S1 (a-c) XRD patterns and (d-f) SEM images of Co_2GeO_4 , Ni_2GeO_4 and Zn_2GeO_4 , respectively.

Fig. S2 (a) SEM image and (b) EDS spectrum of Cd_2GeO_4 .

Fig. S3 SEM image of (a) SnO_2 , (b) In_2O_3 and (c) ZnO, respectively.

Fig. S4 XRD patterns and the standard PDF card of CdO (PDF No. 05-0640).

Fig. S5 SEM image of (a) CdO and (b) GeO₂.

Fig. S6 The response of sensors based on Cd₂GeO₄, SnO₂, In₂O₃, ZnO and CdO to 10 ppm formaldehyde *vs* benzene (S_{formaldehyde}/S_{benzene}, 140 °C).

Table S1 Gas response, operating temperature, and Response-recovery times of

 different nanostructured metal oxides to formaldehyde, as reported in the recent

 literatures 1-11 and this work.

Sensing	Synthetic	BET surface	Conc.	S _{formaldehyde}	T _{sens}	t _{res} /t _{rec}	Ref.
materials	method	area (m²/g)	(ppm)		(°C)	(s)	
ZnO	Hydrothermal	-	100	9.6	275	16/28	1
In_2O_3	Hydrothermal	129.81	20	≈5	130	-	2
SnO_2	Hydrothermal	38.31	100	10.6	200	53/99	3
WO ₃	Hydrothermal	-	100	6.5	350	9/6	4
NiO	Hydrothermal	109	100	≈12	300	-	5
CuO	Hydrothermal	6.91	0.8	≈1.2	300	45/106	6
$ZnSnO_3$	Precipitation	37	100	10.7	220	6/80	7
LaFeO ₃	Sol-gel	-	50	14.2	100	33/27	8
ZnCo ₂ O ₄	Hydrothermal	121	100	7.4	180	9/12	9
CdGa ₂ O ₄	Electrospinning	27	10	18.4	100	7/130	10
Zn_2SnO_4	Hydrothermal	-	10	10.1	160	-	11
Cd_2GeO_4	Hydrothermal	≈10	10	14.1	140	5/99	This
							work

Fig. S7 The change in resistance of sensor based on Cd_2GeO_4 during vacuum extraction and gas-sensing properties of sensor based on Cd_2GeO_4 was measured in the absence of background oxygen using a homemade device.

References for SI

- 1 X. San, M. Li, D. Liu, G. Wang, Y. Shen, D. Meng and F. Meng, A facile one-step hydrothermal synthesis of NiO/ZnO heterojunction microflowers for the enhanced formaldehyde sensing properties, *Journal of Alloys and Compounds*, 2018, **739**, 260-269.
- Z. Wang, C. Hou, Q. De, F. Gu and D. Han, One-Step Synthesis of Co-Doped In₂O₃ Nanorods for High Response of Formaldehyde Sensor at Low Temperature, *ACS Sens*, 2018, 3, 468-475.
- 3 D. Meng, D. Liu, G. Wang, Y. Shen, X. San, M. Li and F. Meng, Low-temperature formaldehyde gas sensors based on NiO-SnO₂ heterojunction microflowers assembled by thin porous nanosheets, *Sensors and Actuators B: Chemical*, 2018, **273**, 418-428.
- 4 H. Yu, J. Li, Y. Tian, and Z. Li, Gas Sensing and Electrochemical Behaviors of Ag-doped
 3D Spherical WO₃ Assembled by Nanostrips to Formaldehyde, *International Journal of Electrochemical Science*, 2018, 13, 9281-9291.
- 5 X. Lai, G. Shen, P. Xue, B. Yan, H. Wang, P. Li, W. Xia and J. Fang, Ordered mesoporous NiO with thin pore walls and its enhanced sensing performance for formaldehyde, *Nanoscale*, 2015, **7**, 4005-4012.
- 6 H. J. Park, N. J. Choi, H. Kang, M. Y. Jung, J. W. Park, K. H. Park and D. S. Lee, A ppblevel formaldehyde gas sensor based on CuO nanocubes prepared using a polyol process, *Sensors and Actuators B: Chemical*, 2014, **203**, 282-288.
- 7 T. Zhou, T. Zhang, R. Zhang, Z. Lou, J. Deng and L. Wang, Hollow ZnSnO₃ cubes with controllable shells enabling highly efficient chemical sensing detection of formaldehyde vapors, ACS Appl Mater Interfaces, 2017, 9, 14525-14533.
- 8 Y. Zhang, B. Jiang, M. Yuan, P. Li, W. Li and X. Zheng, Formaldehyde-sensing properties of LaFeO₃ particles synthesized by citrate sol–gel method, *Journal of Sol-Gel Science and Technology*, 2016, **79**, 167-175.
- 9 T. Zhou, N. Sui, R. Zhang and T. Zhang, Cabbage-shaped zinc-cobalt oxide (ZnCo₂O₄) sensing materials: Effects of zinc ion substitution and enhanced formaldehyde sensing properties, *J Colloid Interface Sci*, 2019, **537**, 520-527.
- 10 H. Chen, L. Sun, G. D. Li and X. Zou, Well-tuned surface oxygen chemistry of cation offstoichiometric spinel oxides for highly selective and sensitive formaldehyde detection, *Chemistry of Materials*, 2018, **30**, 2018-2027.
- 11 X. Li, N. Zhang, C. Liu, S. Adimi, J. Zhou, D. Liu and S. Ruan, Enhanced gas sensing properties for formaldehyde based on ZnO/Zn₂SnO₄ composites from one-step hydrothermal synthesis, *Journal of Alloys and Compounds*, 2021, **850**.