Supporting Information

Carbon Coated SiO Nanoparticles Embedded in Hierarchical Porous N-Doped Carbon Nanosheets for Enhanced Lithium Storage

Qianliang Zhang, Baojuan Xi, Shenglin Xiong*, and Yitai Qian

School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal

Materials, Shandong University, Jinan, 250100, P. R. China

*E-mail: chexsl@sdu.edu.cn (S. L. Xiong)

Fig. S1. FESEM image of $g-C_3N_4$ precursor.

Fig. S2. FESEM image of bulk SiO.

Fig. S4. Nitrogen adsorption-desorption isotherms of SiO@C/CNS.

Fig. S5. Nitrogen adsorption-desorption isotherms of SiO@C.

Fig. S6. Pore size distribution curve of SiO@C/CNS.

Fig. S7. Pore size distribution curve of SiO@C.

Fig. S8. Charge/discharge curves of SiO@C/CNS electrode at the current density of 1 Ag^{-1} .

Fig. S9. Charge/discharge curves of SiO@C/CNS electrode at current densities from 0.2 to 10 Ag^{-1} .

Fig. S10. FESEM image of pristine SiO@C/CNS electrode.

Fig. S11. FESEM image of pristine SiO@C electrode.

Table S1. Cyclability (discharge capacity) and the rate performance comparison of SiO@C/CNS versus reported literature.

Sample	Reversible capacity	Cycle number	Refs.
Si/SiO _x @NC	525 mAh g ⁻¹ at 500mA g ⁻¹	400	1
SiO _x /G/C	524 mAh g⁻¹ at 500mA g⁻¹	500	2
SiO _x /CNTs	441 mAh g⁻¹ at 500mA g⁻¹	500	3
SiO _x /asphalt	600 mAh g⁻¹ at 200mA g⁻¹	200	4
SiO _x @NC	~600 mAh g ⁻¹ at 500 mA g ⁻¹	500	5
DC-HSiO _x	682 mAh g ⁻¹ at 1000 mA g ⁻¹	300	6
LiBp-SiO _x /C@G	377 mAh g⁻¹ at 750 mA g⁻¹	400	7
SiO _x @C nanorods	724 mAh g⁻¹ at 100 mA g⁻¹	350	8
SiO _x /C@2D-C	690 mAh g ⁻¹ at 1000 mA g ⁻¹	400	This work

Table S2. Electrochemical impedance parameters of SiO@C/CNS and SiO@C electrodes.

Electrode	R _e (Ω)	R _{ct} (Ω)
SiO@C/CNS	2.923	1.938
SiO@C	3.461	14.87

References

1. M. K. Majeed, G. Ma, Y. Cao, H. Mao, X. Ma and W. Ma, Metal organic frameworks-derived mesoporous Si/SiO_x@NC nanospheres as a long-lifespan anode material for lithium ion batteries, *Chem. Eur. J.*, 2019, **25**, 11991–11997.

W. Guo, X. Yan, F. Hou, L. Wen, Y. Dai, D. Yang, X. Jiang, J. Liu, J. Liang and S.
X. Dou, Flexible and free-standing SiO_x/CNT composite films for high capacity and durable lithium ion batteries, *Carbon*, 2019, **152**, 888-897.

3. G. Li, J. Y. Li, F. S. Yue, Q. Xu, T. T. Zuo, Y. X. Yin and Y. G. Guo, Reducing the volume deformation of high capacity $SiO_x/G/C$ anode toward industrial application in high energy density lithium-ion batteries, *Nano Energy*, 2019, **60**, 485–492.

4. Q. Xu, J. K. Sun, G. Li, J. Y. Li, Y. X. Yin and Y. G. Guo, Facile synthesis of a SiO_x/asphalt membrane for high performance lithium-ion battery anodes, *Chem. Commun.*, 2017, **53**, 12080–12083.

5. G. Hu, K. Zhong, R. Yu, Z. Liu, Y. Zhang, J. Wu, L. Zhou and L. Mai, Enveloping SiO_x in N-doped carbon for durable lithium storage via an eco-friendly solvent-free approach, *J. Mater. Chem. A*, 2020, **8**, 13285–13291.

6. T. Xu, Q. Wang, J. Zhang, X. Xie and B. Xia, Green synthesis of dual carbon conductive network-encapsulated hollow SiO_x spheres for superior lithium-ion batteries, *ACS Appl. Mater. Interfaces*, 2019, **11**, 19959–19967.

7. M.-Y. Yan, G. Li, J. Zhang, Y.-F. Tian, Y.-X. Yin, C.-J. Zhang, K.-C. Jiang, Q. Xu, H.-L. Li and Y.-G. Guo, Enabling SiO_x/C anode with high initial coulombic efficiency through a chemical pre-lithiation strategy for high-energy-density lithium-ion batteries, *ACS Appl. Mater. Interfaces*, 2020, **12**, 27202–27209.

8. Y. Ren and M. Li, Facile synthesis of $SiO_x@C$ composite nanorods as anodes for lithium ion batteries with excellent electrochemical performance, *J. Power Sources*, 2016, **306**, 459–466.