# **Supporting Information**

Eu-MOF and its mixed-matrix membranes as fluorescent sensor for quantitative ratiometric pH and folic acid detection, and visible fingerprint identifying

Yansong Jiang<sup>1,2</sup><sup>†</sup>, Yating Huang<sup>1</sup><sup>†</sup>, Xiangxiang Shi<sup>1</sup>, Zijing Lu<sup>3</sup>, Jiamo Ren<sup>1</sup>, Zimo Wang<sup>1</sup>, Jianing Xu<sup>1</sup>, Yong Fan<sup>1\*</sup>, Li Wang<sup>1\*</sup>

1 College of Chemistry, Jilin University, Changchun, 130012, Jilin, China

2 South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou, 510640, Guangdong, China

3 Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430072, Hubei, China

E-mail: lhl222@jlu.edu.cn; lwang99@jlu.edu.cn.

<sup>†</sup> These authors contributed equally to this work.

## **Table of Contents**

| Experimental section                                                                                                 | S3         |
|----------------------------------------------------------------------------------------------------------------------|------------|
| Fig. S1 PXRD patterns of 1.                                                                                          | S4         |
| Fig. S2 PXRD patterns of 1@PCL and 1@PVDF.                                                                           | S4         |
| Fig. S3 TGA curve of 1.                                                                                              | S4         |
| Fig. S4 PXRD patterns of the product after TGA.                                                                      | S5         |
| Fig. S5 The SEM images of as-synthesized 1 (a) and grind sample (b).                                                 | S5         |
| Fig. S6 The cross section SEM and EDS elemental mapping images.                                                      | S5         |
| Fig. S7 The effect of ions and anions for FA detection.                                                              | S6         |
| Fig. S8 PXRD patterns of 1 in different pH conditions.                                                               | <b>S</b> 6 |
| Fig. S9 PXRD pattern of 1 after FA detection.                                                                        | <b>S</b> 6 |
| Fig. S10 UV-vis spectrum of analytes.                                                                                | <b>S</b> 7 |
| Fig. S11 The fluorescent spectrum of MMMs.                                                                           | <b>S</b> 7 |
| Fig. S12 The contact angle of MMMs.                                                                                  | <b>S</b> 7 |
| Fig. S13 The recycle experiment of 1 and MMMs.                                                                       | <b>S</b> 8 |
| Fig. S14 PXRD patterns of the recycled 1 and MMMs.                                                                   | <b>S</b> 8 |
| Fig. S15 The photographs of MMMs in water or PBS.                                                                    | <b>S</b> 8 |
| Fig. S16 PXRD patterns of 1, 1@PVDF and 1@PCL after exposed in                                                       | S9         |
| air for four months.                                                                                                 |            |
| <b>Table S1</b> Crystal data and structure refinement for 1.                                                         | S10        |
| Table S2 The selected bond lengths for 1.                                                                            | S11        |
| Table S3 The selected bond angles for 1.                                                                             | S12        |
| <b>Table S4</b> The mechanical property of MMMs.                                                                     | S13        |
| <b>Table S5</b> The comparison of the detection limit between 1 and otherreported chemical sensors for FA detection. | S14        |
| Reference                                                                                                            | S14        |

#### **Experimental section**

Material and instruments

All chemical reagents were obtained from commercial sources and used without further purification. Powder X-ray diffraction (XRD) measurements were performed using a SHIMADZU XRD-6000 diffractometer with Cu-K $\alpha$  radiation ( $\lambda = 1.5418$  Å). FT-IR spectra were recorded on a Nicolet IS5 spectrometer between 4000 and 400 cm-1 using the KBr pellet method. Elemental analyses (C, H and N) were performed using an Elementar Vario EL cube CHNOS elemental analyzer. Thermogravimetric analyses (TGA) were carried out using a PerkinElmer TGA 7 instrument, with a heating rate of 10 °C min<sup>-1</sup> under air atmosphere. Photoluminescence analyses were performed on an Edinburgh Instrument FLS 920 luminescence spectrometer. UV-vis absorption measurements were carried out on a Shimadzu UV-3100 spectrophotometer. Scanning electron microscopy (SEM) images and Energydispersive X-ray spectroscopy (EDS) were obtained with a JEOL JSM-IT500A instrument. The contact angle was determined with a KRÜSS GmbH DSA-25 instrument.

#### Determination of crystal structure

A suitable single crystal of 1 was carefully picked out under an optical microscope for single crystal XRD analysis. The intensity data was collected on a Bruker P4 diffractometer with graphite-monochromated Mo-K $\alpha$  ( $\lambda = 0.71073$  Å) radiation at room temperature. The structure was solved by direct method and refined by full-matrix least-squares on F<sup>2</sup> using OLEX2 equipped with the SHELXTL-2014 crystallographic software packages.[S1-S3] All the hydrogen atoms were placed geometrically and refined in a riding model. All of the non-hydrogen atoms were refined anisotropically. The crystal data and structure refinement for **1** is summarized in Table S1, selected bond lengths and angles are given in Tables S2–S3. CCDC-2081879, contains the supplementary crystallographic data for **1**.



Fig. S1 PXRD patterns of 1.



Fig. S2 PXRD patterns of 1@PCL and 1@PVDF.



Fig. S3 TGA curve of 1.



Fig. S4 PXRD patterns of the product after TGA.



Fig. S5 The SEM images of as-synthesized 1 (a) and grind sample (b).



Fig. S6 The cross section SEM images and EDS elemental mapping images (a, c)1@PVDF, (b, d)1@PCL.



Fig. S7 The effect of ions and anions for FA detection.



Fig. S8 PXRD patterns of 1 in different pH conditions.



Fig. S9 PXRD pattern of 1 after FA detection.



Fig. S10 UV-vis spectrum of analytes.



Fig. S11 The fluorescent spectrum of MMMs.



Fig. S12 The contact angle of MMMs. 1@PCL (left: 118.4°) and 1@PVDF (right: 119.7°).



Fig. S13 The recycle experiment of 1 and MMMs.



Fig. S14 PXRD patterns of the recycled 1 and MMMs.



Fig. S15 The photographs of (a) 1@PVDF in H<sub>2</sub>O, (b) 1@PCL in H<sub>2</sub>O, (c) 1@PVDF in PBS, (d) 1@PCL in PBS.



Fig. S16 PXRD patterns of 1, 1@PVDF and 1@PCL after exposed in air for four months.

| Table SI Crystal data and structure refinement for 1.  |                                                        |  |  |  |
|--------------------------------------------------------|--------------------------------------------------------|--|--|--|
| Empirical formula                                      | $C_{34}H_{19}EuN_2O_8$                                 |  |  |  |
| Formula weight                                         | 735.47                                                 |  |  |  |
| Temperature/K                                          | 293(2) K                                               |  |  |  |
| Crystal system                                         | monoclinic                                             |  |  |  |
| Space group                                            | $P2_1/c$                                               |  |  |  |
| a/Å                                                    | 11.590(2)                                              |  |  |  |
| <i>b</i> /Å                                            | 16.888(3)                                              |  |  |  |
| $c/\text{\AA}$                                         | 14.725(3)                                              |  |  |  |
| $\alpha/^{\circ}$                                      | 90.00                                                  |  |  |  |
| β/°                                                    | 109.92(3)                                              |  |  |  |
| $\gamma/^{\circ}$                                      | 90.00                                                  |  |  |  |
| Volume/Å <sup>3</sup>                                  | 2709.7(9)                                              |  |  |  |
| Z                                                      | 4                                                      |  |  |  |
| $\rho_{calc}g/cm^3$                                    | 1.803                                                  |  |  |  |
| µ/mm <sup>-1</sup>                                     | 2.377                                                  |  |  |  |
| F(000)                                                 | 1456.0                                                 |  |  |  |
| Crystal size/mm <sup>3</sup>                           | 0.6 	imes 0.3 	imes 0.3                                |  |  |  |
| Radiation                                              | MoKa ( $\lambda = 0.71073$ )                           |  |  |  |
| 20 range for data collection/° 6 to 54.86              |                                                        |  |  |  |
| Index ranges                                           | $-14 \le h \le 14, -21 \le k \le 21, -16 \le l \le 19$ |  |  |  |
| Reflections collected                                  | 23474                                                  |  |  |  |
| Independent reflections                                | $6014 [R_{int} = 0.0623, R_{sigma} = 0.0541]$          |  |  |  |
| Data/restraints/parameters                             | 6014/0/406                                             |  |  |  |
| Goodness-of-fit on F <sup>2</sup>                      | 1.031                                                  |  |  |  |
| Final R indexes [I>=2 $\sigma$ (I)]                    | $R_1 = 0.0351, wR_2 = 0.0630$                          |  |  |  |
| Final R indexes [all data]                             | $R_1 = 0.0504, wR_2 = 0.0689$                          |  |  |  |
| Largest diff. peak/hole / e Å <sup>-3</sup> 0.62/-1.75 |                                                        |  |  |  |

Table S1 Crystal data and structure refinement for 1.

| Atom | Atom             | Length/Å  |
|------|------------------|-----------|
| Eu1  | Eu1 <sup>1</sup> | 4.2067(7) |
| Eu1  | 01               | 2.450(3)  |
| Eu1  | O2               | 2.442(3)  |
| Eu1  | $O8^2$           | 2.356(3)  |
| Eu1  | O4 <sup>3</sup>  | 2.325(3)  |
| Eu1  | $O7^4$           | 2.303(3)  |
| Eu1  | O3 <sup>5</sup>  | 2.369(3)  |
| Eu1  | N1               | 2.614(4)  |
| Eu1  | N2               | 2.543(3)  |
| Eu1  | C8               | 2.812(4)  |
| Eu1  | $C22^{2}$        | 3.140(4)  |
| O1   | C8               | 1.257(5)  |
| O2   | C8               | 1.271(5)  |
| 08   | Eu1 <sup>6</sup> | 2.356(3)  |
| 08   | C22              | 1.243(5)  |
| O4   | Eu1 <sup>7</sup> | 2.325(3)  |
| O4   | C7               | 1.260(5)  |
| 07   | Eu1 <sup>8</sup> | 2.303(3)  |
| 07   | C22              | 1.263(5)  |
| O3   | Eu1 <sup>9</sup> | 2.369(3)  |

Table S2 The selected bond lengths for 1.

 ${}^{1}1\text{-}X,1\text{-}Y,2\text{-}Z;\ {}^{2}1\text{+}X,1/2\text{-}Y,1/2\text{+}Z;\ {}^{3}1\text{-}X,1/2\text{+}Y,3/2\text{-}Z;\ {}^{4}\text{-}X,1/2\text{+}Y,3/2\text{-}Z;\ {}^{5}\text{+}X,1/2\text{-}Y,1/2\text{+}Z;\ {}^{6}\text{-}1\text{+}X,1/2\text{-}Y,-1/2\text{+}Z;\ {}^{7}1\text{-}X,-1/2\text{+}Y,3/2\text{-}Z;\ {}^{8}\text{-}X,-1/2\text{+}Y,3/2\text{-}Z;\ {}^{9}\text{+}X,1/2\text{-}Y,-1/2\text{+}Z$ 

| Atom            | Atom | Atom             | Angle/°    | Atom            | Atom | Atom             | Angle/°    |
|-----------------|------|------------------|------------|-----------------|------|------------------|------------|
| 01              | Eu1  | N1               | 76.76(10)  | O7 <sup>5</sup> | Eu1  | O8 <sup>2</sup>  | 125.84(11) |
| 01              | Eu1  | N2               | 89.96(11)  | O7 <sup>5</sup> | Eu1  | O4 <sup>4</sup>  | 74.27(10)  |
| 01              | Eu1  | C8               | 26.50(10)  | O7 <sup>5</sup> | Eu1  | O3 <sup>3</sup>  | 79.98(10)  |
| 01              | Eu1  | C22 <sup>2</sup> | 164.21(10) | O7 <sup>5</sup> | Eu1  | N1               | 144.01(11) |
| O2              | Eu1  | 01               | 53.32(9)   | O7 <sup>5</sup> | Eu1  | N2               | 146.89(11) |
| O2              | Eu1  | N1               | 112.59(10) | O7 <sup>5</sup> | Eu1  | C8               | 77.88(11)  |
| O2              | Eu1  | N2               | 73.46(11)  | O7 <sup>5</sup> | Eu1  | C22 <sup>2</sup> | 106.31(11) |
| O2              | Eu1  | C8               | 26.84(10)  | O3 <sup>3</sup> | Eu1  | 01               | 129.73(10) |
| O2              | Eu1  | C22 <sup>2</sup> | 140.34(10) | O3 <sup>3</sup> | Eu1  | O2               | 76.70(9)   |
| O8 <sup>2</sup> | Eu1  | 01               | 145.82(10) | O3 <sup>3</sup> | Eu1  | N1               | 135.46(10) |
| O8 <sup>2</sup> | Eu1  | O2               | 141.96(10) | O3 <sup>3</sup> | Eu1  | N2               | 79.71(10)  |
| O8 <sup>2</sup> | Eu1  | O3 <sup>3</sup>  | 78.00(10)  | O3 <sup>3</sup> | Eu1  | C8               | 103.31(11) |
| O8 <sup>2</sup> | Eu1  | N1               | 69.07(11)  | O3 <sup>3</sup> | Eu1  | C22 <sup>2</sup> | 65.32(10)  |
| O8 <sup>2</sup> | Eu1  | N2               | 74.43(11)  | N1              | Eu1  | C8               | 95.50(11)  |
| O8 <sup>2</sup> | Eu1  | C8               | 155.50(11) | N1              | Eu1  | C22 <sup>2</sup> | 88.51(11)  |
| O8 <sup>2</sup> | Eu1  | C22 <sup>2</sup> | 20.43(10)  | N2              | Eu1  | N1               | 63.40(11)  |
| O4 <sup>4</sup> | Eu1  | 01               | 89.74(10)  | N2              | Eu1  | C8               | 81.70(11)  |
| O4 <sup>4</sup> | Eu1  | O2               | 135.10(10) | N2              | Eu1  | C22 <sup>2</sup> | 88.43(11)  |
| O4 <sup>4</sup> | Eu1  | O8 <sup>2</sup>  | 82.90(11)  | O4 <sup>4</sup> | Eu1  | C8               | 112.60(11) |
| O4 <sup>4</sup> | Eu1  | O3 <sup>3</sup>  | 129.36(10) | O4 <sup>4</sup> | Eu1  | C22 <sup>2</sup> | 81.10(11)  |
| O4 <sup>4</sup> | Eu1  | N1               | 76.00(10)  | O7 <sup>5</sup> | Eu1  | O1               | 83.25(11)  |
| O4 <sup>4</sup> | Eu1  | N2               | 138.29(11) | O7 <sup>5</sup> | Eu1  | O2               | 76.58(10)  |

 Table S3 The selected bond angles for 1.

<sup>1</sup>1-X,1-Y,2-Z; <sup>2</sup>1+X,1/2-Y,1/2+Z; <sup>3</sup>+X,1/2-Y,1/2+Z; <sup>4</sup>1-X,1/2+Y,3/2-Z; <sup>5</sup>-X,1/2+Y,3/2-Z; <sup>6</sup>-1+X,1/2-Y,-1/2+Z; <sup>7</sup>1-X,-1/2+Y,3/2-Z; <sup>8</sup>-X,-1/2+Y,3/2-Z; <sup>9</sup>+X,1/2-Y,-1/2+Z

|        | Fm   | σm    | εm  | Εt    | εb  | Fb      | σb      | Ub   |
|--------|------|-------|-----|-------|-----|---------|---------|------|
|        | (N)  | (MPa) | (%) | (MPa) | (%) | (N)     | (MPa)   | (mJ) |
| 1@PCL  | 4.10 | 1.02  | 48  | 7.64  | 68  | 1.30    | 0.325   | 20.2 |
| 1@PVDF | 6.25 | 10.4  | 6.1 | 408   | 140 | -0.0150 | -0.0250 | 40.8 |

 Table S4 The mechanical property of MMMs.

| Materials                         | Detection limit (M)   | Reference |
|-----------------------------------|-----------------------|-----------|
| Y <sub>2</sub> O <sub>3</sub> :Eu | $0.083 	imes 10^{-6}$ | S4        |
| CdTe                              | $0.095 	imes 10^{-6}$ | S5        |
| Carbon dots                       | $1.2 \times 10^{-6}$  | S6        |
| ZnS: Mn or Cu                     | 1.1×10 <sup>-5</sup>  | S7        |
| CdInS <sub>2</sub> QDs            | 8×10 <sup>-5</sup>    | S8        |
| 1,10-phenantroline-Tb(III)-Ag NPs | 0.21×10 <sup>-6</sup> | S9        |
| MoS <sub>2</sub> QDs              | 0.1×10 <sup>-3</sup>  | S10       |

 Table S5 The comparison of the detection limit between 1 and other reported chemical sensors for FA detection.

### Reference

[S1] O.V. Dolomanov, L.J. Bourhis, R.J. Gildea, J.A.K. Howard, H. Puschmann, OLEX2: a complete structure solution, refinement and analysis program, Journal of Applied Crystallography, 2009, 42, 339-341.

[S2] G. Sheldrick, Crystal structure refinement with SHELXL, Acta Crystallographica Section C, 2015, 71, 3-8.

[S3] G. Sheldrick, A short history of SHELX, Acta Crystallographica Section A, 2008, 64, 112-122.

[S4] F. Gudarzy, A.B. Moghaddam, S. Mozaffari, *et al.* A lanthanide nanoparticle-based luminescent probe for folic acid. Microchim Acta 2013,180, 1257–1262.

[S5] P. Nagaraja, R.A. Vasantha. Spectrophotometric determination of folic acid in pharmaceutical preparations by coupling reactions with iminodibenzyl or 3-aminophenol or sodium molybdate–pyrocatechol. Anal Biochem 2002, 307, 316–321.

[S6] S.Y. Liu, J.J. Hu, X.G. Su Detection of ascorbic acid and folic acid based on watersoluble  $CuInS_2$  quantum dots. Analyst 2012, 137, 4598–4604.

[S7] B. Zeng, F. Zhao. Single-walled carbon nanotube-ionic liquid paste electrode for the sensitive voltammetric determination of folic acid. Sens Actuat B 2008, 134, 895–901.

[S8] S.Q. Han, X.X. Chen. Copper nanoclusters-enhanced chemiluminescence for folic acid and nitrite detection. Spectrochim Acta A 2019, 210, 315–320.

[S9] Y. Ganjkhanlou, M. Kazemzad, F. Alikhani Hessari. Chromaticity dependence on Eu concentration in Y<sub>2</sub>O<sub>3</sub>:Eu nanopowders. Nano: Brief Report Rev 2010, 5, 111–116.

[S10] Y. Peng, W. Dong, L. Wan, *et al.* Determination of folic acid via its quenching effect on the fluorescence of  $MoS_2$  quantum dots. Microchim Acta 2019,186, 605.