Applying Band Gap Engineering to Tune Linear Optical and Nonlinear Optical Properties of Noncentrosymmetric Chalcogenides $La_4Ge_3Se_xS_{12-x}$ (x = 0, 2, 4, 6, 8, 10)

Gary Cicirello ^a, Kui Wu ^b, Bing Bing Zhang ^{b*}, Jian Wang ^{a*}

^a Department of Chemistry and Biochemistry, Wichita State University, Wichita, Kansas, 67260,

United States

^b College of Chemistry and Environmental Science, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding 071002, China

Supporting Information

- Table S1. Selected crystal data and unit cell parameters for La₄Ge₃Se_xS_{12-x} (x = 0, 2, 4, 6, 8, 10) (Page 4)
- Table S2. Refined atomic coordinates and isotropic displacement parameters for La₄Ge₃Se_xS_{12-x} (x = 0, 2, 4, 6, 8, 10) (Page 5-7)
- Table S3. Selected important interatomic distances (Å) in La₄Ge₃Se_xS_{12-x} (x = 0, 2, 4, 6, 8, 10) (Page 8-11)
- Figure S1. The calculated and experimental X-ray diffraction patterns of La₄Ge₃S₁₂. (Page 12)
- Figure S2. The calculated and experimental X-ray diffraction patterns of La₄Ge₃Se₂S₁₀. (Page 13)
- Figure S3. The calculated and experimental X-ray diffraction patterns of La₄Ge₃Se₄S_{8.} (Page 14)

- Figure S4. The calculated and experimental X-ray diffraction patterns of La₄Ge₃Se₆S₆. (Page 15)
- Figure S5. The calculated and experimental X-ray diffraction patterns of La₄Ge₃Se₈S₄. (Page 16)
- Figure S6. The calculated and experimental X-ray diffraction patterns of La₄Ge₃Se₁₀S₂. (Page 17)
- 10. Figure S7. A comparison of Se content and unit cell volume in La₄Ge₃Se_xS_{12-x} (x = 0, 2, 4, 6, 8, 10), emphasizing the linear increase of volume as Se is incorporated into the crystal structure. (Page 18)
- 11. Figure S8. Tauc plots for allowed direct and indirect transitions of La₄Ge₃S_{12.} (Page 19)
- 12. Figure S9. Tauc plots for allowed direct and indirect transitions of La₄Ge₃Se₂S_{10.} (Page 20)
- 13. Figure S10. Tauc plots for allowed direct and indirect transitions of La₄Ge₃Se₄S_{8.} (Page 21)
- 14. Figure S11. Tauc plots for allowed direct and indirect transitions of La₄Ge₃Se₆S₆ (Page 22)
- 15. Figure S12. Tauc plots for allowed direct and indirect transitions of La₄Ge₃Se₈S₄. (Page 23)
- 16. Figure S13. Tauc plots for allowed direct and indirect transitions of La₄Ge₃Se₁₀S_{2.} (Page 24)
- 17. **Figure S14.** SHG intensities of La₄Ge₃Se₄S₈ and AgGaS₂ @2.09 μm measured at variable particle size samples. (Page 25)
- Figure S15. SHG intensities of La₄Ge₃Se₆S₆ and AgGaS₂ @2.09 μm measured at variable particle size samples. (Page 26)
- Figure S16. SHG intensities of La₄Ge₃Se₈S₄ and AgGaS₂ @2.09 μm measured at variable particle size samples. (Page 27)

- Figure S17. Calculated birefringence of La₄Ge₃S₁₂ versus wavelength of the fundamental light. (Page 28)
- Figure S18. Calculated birefringence of La₄Ge₃Se₆S₆ versus wavelength of the fundamental light. (Page 29)
- 22. **Table S4.** Results of EDX analyses of selected crystals of $La_4Ge_3Se_2S_{10}$, $La_4Ge_3Se_6S_{6}$, and $La_4Ge_3Se_{10}S_{2}$. (Page 29-31)

Empirical Formula	$La_4Ge_3S_{12}$	$La_4Ge_3Se_2S_{10}$	$La_4Ge_3Se_4S_8$	$La_4Ge_3Se_6S_6$	$La_4Ge_3Se_8S_4$	$La_4Ge_3Se_{10}S_2$
Formula weight	1158.13	1247.40	1356.28	1423.43	1521.60	1616.26
Temperature	200(2) K	296(2) K	296(2) K	296(2) K	296(2) K	296(2) K
Radiation, wavelength	Mo-Kα, 0.71073 Å	Mo-Kα, 0.71073 Å	Mo-Kα, 0.71073 Å	Mo-Kα, 0.71073 Å	Mo-Kα, 0.71073 Å	Mo-Kα, 0.71073 Å
Crystal system			Rhom	oohedral		
Space group			<i>R3c</i> (N	No. 161)		
Unit cell dimensions	a=19.427(3) Å	a=19.5575(6) Å	a=19.6679(12) Å	a=19.7766(11) Å	a=19.8976(12) Å	a=20.0723(12) Å
	c=8.0753(13) Å	c=8.1468(19) Å	c=8.1950(6) Å	c= 8.2448(4) Å	c=8.2984(4) Å	c=8.3460(5) Å
Unit cell volume	2639.2(10) Å ³	2698.64(19) Å ³	2745.3(4) Å ³	2792.6(3) Å ³	2845.3(4) Å ³	2912.1(4) Å ³
Z				6		
Density (calc)	4.372 g/cm ³	4.605 g/cm ³	4.922 g/cm ³	5.078 g/cm ³	5.328 g/cm ³	5.530 g/cm ³
Absorption coefficient	15.942 mm ⁻¹	19.221 mm ⁻¹	23.427 mm ⁻¹	25.491 mm ⁻¹	28.806 mm ⁻¹	31.713 mm ⁻¹
Final R indices [I> $2\sigma_{(I)}$]	$R_1 = 0.0323, wR_2$	$R_1 = 0.0351, wR_2$	$R_1 = 0.0323, wR_2$	$R_1 = 0.0296, wR_2$	$R_1 = 0.0391, wR_2$	$R_1 = 0.0368, wR_2 =$
	= 0.0634	= 0.0618	= 0.0518	= 0.0439	= 0.0709	0.0632
Final R indices [all	$R_1 = 0.0383, wR_2$	$R_1 = 0.0520, wR_2$	$R_1 = 0.0415, wR_2$	$R_1 = 0.0374, wR_2$	$R_1 = 0.0646, wR_2$	$R_1 = 0.0515, wR_2 =$
data]	= 0.0763	= 0.0812	= 0.0597	= 0.0457	= 0.0840	0.0680

Table S1. Selected crystal data and unit cell parameters for $La_4Ge_3Se_xS_{12-x}$ (x = 0, 2, 4, 6, 8, 10)

Atoms	Wyckoff	x	у	Ζ	Occupancy	$U_{\rm eq}({ m \AA}^2)$
La ₄ Ge ₃ S ₁₂						
Lal	18b	0.56401(7)	0.66945(9)	0.97069(15)	1	0.0113(3)
La2	6a	0.3333	0.6667	0.6736(2)	1	0.0092(5)
Ge1	18b	0.34629(12)	0.47923(13)	1.0210(3)	1	0.0074(5)
S1	18b	0.2470(3)	0.4661(3)	1.1771(7)	1	0.0110(11)
S2	18b	0.3939(3)	0.6029(3)	0.9226(6)	1	0.0101(11)
S3	18b	0.6039(3)	0.6631(3)	1.3253(6)	1	0.0117(12)
S4	18b	0.5113(3)	0.5572(3)	0.6789(6)	1	0.0123(11)
			La ₄ Ge ₃ Se ₂ S	510		
Lal	18b	0.43819(6)	0.33469(7)	0.97798(14)	1	0.0188(3)
La2	6a	0.6667	0.3333	1.1813(2)	1	0.0138(4)
Gel	18b	0.68003(10)	0.53332(11)	1.0269(2)	1	0.0125(4)
S 1	18b	0.57954(18)	0.44671(19)	1.1871(4)	0.687(16)	0.0165(10)
Se1	18b	0.57954(18)	0.44671(19)	1.1871(4)	0.313(16)	0.0165(10)
S2	18b	0.4454(2)	0.4896(2)	1.0171(4)	0.796(15)	0.0178(12)
Se2	18b	0.4454(2)	0.4896(2)	1.0171(4)	0.204(15)	0.0178(12)
S3	18b	0.3916(2)	0.3286(2)	1.3313(5)	0.880(15)	0.0191(13)
Se3	18b	0.3916(2)	0.3286(2)	1.3313(5)	0.120(15)	0.0191(13)
S4	18b	0.5423(2)	0.2691(3)	0.9298(5)	1	0.0129(8)
			La ₄ Ge ₃ Se ₄	S ₈		
La1	18b	0.43797(5)	0.33346(6)	0.02593(9)	1	0.01817(19)
La2	6a	0.6667	0.3333	0.32203(13)	1	0.0112(3)
Gel	18b	0.65285(8)	0.51901(8)	-0.02245(15)	1	0.0114(3)
S1	18b	0.75416(10)	0.53323(10)	-0.1847(2)	0.366(11)	0.0153(6)
Se1	18b	0.75416(10)	0.53323(10)	-0.1847(2)	0.634(11)	0.0153(6)
S2	18b	0.60615(18)	0.39664(18)	0.0732(3)	0.977(11)	0.0118(9)
Se2	18b	0.60615(18)	0.39664(18)	0.0732(3)	0.023(11)	0.0118(9)
S3	18b	0.39643(13)	0.33939(14)	-0.3276(3)	0.724(10)	0.0150(7)

Table S2. Refined atomic coordinates and isotropic displacement parameters for $La_4Ge_3Se_xS_{12-x}$ (x = 0, 2, 4, 6, 8, 10)

Atoms	Wyckoff	x	У	Ζ	Occupancy	$U_{ m eq}$ (Å ²)
Se3	18b	0.39643(13)	0.33939(14)	-0.3276(3)	0.276(10)	0.0150(7)
S4	18b	0.49060(11)	0.44729(11)	0.3208(2)	0.522(11)	0.0156(6)
Se4	18b	0.49060(11)	0.44729(11)	0.3208(2)	0.478(11)	0.0156(6)
			La ₄ Ge ₃ Se ₆	S ₆		
Lal	18b	0.56130(4)	0.66595(5)	0.97383(8)	1	0.01846(18)
La2	6a	0.3333	0.6667	0.67836(12)	1	0.0115(2)
Gel	18b	0.34722(7)	0.48143(6)	1.02229(14)	1	0.0118(3)
S1	18b	0.24572(7)	0.46723(8)	1.18522(16)	0.240(9)	0.0142(5)
Se1	18b	0.24572(7)	0.46723(8)	1.18522(16)	0.760(9)	0.0142(5)
S2	18b	0.39365(15)	0.60361(14)	0.9275(3)	0.965(9)	0.0119(9)
Se2	18b	0.39365(15)	0.60361(14)	0.9275(3)	0.035(9)	0.0119(9)
S3	18b	0.60387(9)	0.66028(10)	1.3274(2)	0.535(9)	0.0170(6)
Se3	18b	0.60387(9)	0.66028(10)	1.3274(2)	0.465(9)	0.0170(6)
S4	18b	0.50915(8)	0.55226(8)	0.67890(18)	0.374(8)	0.0150(5)
Se4	18b	0.50915(8)	0.55226(8)	0.67890(18)	0.626(8)	0.0150(5)
			La ₄ Ge ₃ Se ₈	S ₄		
Lal	18b	0.43908(7)	0.33400(8)	0.02710(15)	1	0.0200(3)
La2	6a	0.6667	0.3333	0.3209(2)	1	0.0155(5)
Gel	18b	0.65278(12)	0.51812(12)	-0.0231(3)	1	0.0142(5)
S1	18b	0.75433(12)	0.53228(13)	-0.1854(3)	0.067(19)	0.0175(8)
Se1	18b	0.75433(12)	0.53228(13)	-0.1854(3)	0.933(19)	0.0175(8)
S2	18b	0.6063(2)	0.3959(2)	0.0723(5)	0.864(18)	0.0143(14)
Se2	18b	0.6063(2)	0.3959(2)	0.0723(5)	0.136(18)	0.0143(14)
S3	18b	0.39621(13)	0.34008(15)	-0.3270(3)	0.320(18)	0.0178(9)
Se3	18b	0.39621(13)	0.34008(15)	-0.3270(3)	0.680(18)	0.0178(9)
S4	18b	0.49129(13)	0.44805(12)	0.3201(3)	0.165(18)	0.0178(8)
Se4	18b	0.49129(13)	0.44805(12)	0.3201(3)	0.835(18)	0.0178(8)
$La_4Ge_3Se_{10}S_2$						
Lal	18b	0.56213(6)	0.66732(6)	0.97182(13)	1	0.0187(3)
La2	6a	0.3333	0.6667	0.6788(2)	1	0.0156(4)

Atoms	Wyckoff	x	У	Ζ	Occupancy	$U_{ m eq}$ (Å ²)
Ge1	18b	0.34685(10)	0.48149(10)	1.0251(2)	1	0.0129(4)
Se1	18b	0.24530(9)	0.46716(10)	1.1854(2)	1	0.0166(4)
S2	18b	0.39433(14)	0.60466(14)	0.9272(3)	0.577(15)	0.0131(9)
Se2	18b	0.39433(14)	0.60466(14)	0.9272(3)	0.423(15)	0.0131(9)
S3	18b	0.60401(9)	0.65991(11)	1.3267(2)	0.135(14)	0.0154(6)
Se3	18b	0.60401(9)	0.65991(11)	1.3267(2)	0.865(14)	0.0154(6)
S4	18b	0.50909(10)	0.55265(9)	0.6819(2)	0.032(14)	0.0166(6)
Se4	18b	0.50909(10)	0.55265(9)	0.6819(2)	0.968(14)	0.0166(6)

Atom Pa	airs	Distances (Å)	Atom P	airs	Distances (Å)
			$La_4Ge_3S_{12}$		
Lal	S3	2.868(5)	La2	S2	2.901(5)
	S2	2.911(5)		S2	2.901(5)
	S4	2.945(6)		S2	2.901(5)
	S3	2.985(5)		S2	2.913(5)
	S 1	3.013(5)		S2	2.913(5)
	S4	3.021(6)		S2	2.913(5)
	S 1	3.089(5)		S 1	3.386(6)
Gel	S4	2.197(6)		S 1	3.386(6)
	S3	2.200(5)		S 1	3.386(6)
	S 1	2.209(6)			
	S2	2.244(6)			
			$La_4Ge_3Se_2S_{10}$		
Lal	Se3	2.888(4)	La2	S4	2.922(4)
	S3	2.888(4)		S4	2.922(4)
	S4	2.924(4)		S4	2.922(4)
	S2	2.979(4)		S4	2.939(4)
	S3	3.004(4)		S4	2.939(4)
	S1	3.048(3)		S4	2.939(4)
	Se2	3.073(4)		Se1	3.406(3)
	S2	3.073(4)		Se1	3.406(3)
	S1	3.118(3)			
Gel	Se3	2.229(4)			
	S3	2.229(4)			
	S4	2.237(5)			
	S2	2.244(4)			
	Se2	2.244(4)			
	S 1	2.260(4)			

Table S3. Selected important interatomic distances (Å) in $La_4Ge_3Se_xS_{12-x}$ (x = 0, 2, 4, 6, 8, 10)

Atom Pa	airs	Distances (Å)	Atom Pa	airs	Distances (Å)
		L	La ₄ Ge ₃ Se ₄ S ₈		
Lal	Se3	2.908(2)	La2	Se2	2.934(3)
	S3	2.908(2)		S2	2.934(3)
	S2	2.920(3)		Se2	2.934(3)
	Se4	3.023(2)		S2	2.934(3)
	S4	3.023(2)		S2	2.934(3)
	S3	3.028(2)		Se2	2.947(3)
	S 1	3.0745(18)		S2	2.947(3)
	Se1	3.0745(18)		Se2	2.947(3)
	S4	3.100(2)		S2	2.947(3)
Gel	S2	2.245(3)		Se2	2.947(3)
	Se3	2.255(3)		S2	2.947(3)
	S3	2.255(3)			
	Se4	2.279(2)			
	S4	2.279(2)			
	S 1	2.293(2)			
		L	$La_4Ge_3Se_6S_6$		
Lal	Se3	2.9257(17)	La2	Se2	2.947(3)
	S3	2.9257(17)		S2	2.947(3)
	S2	2.928(3)		Se2	2.947(3)
	S3	3.0514(18)		S2	2.947(3)
	Se4	3.0540(16)		S2	2.947(3)
	S4	3.0540(16)		Se2	2.957(3)
	S 1	3.0928(14)		S2	2.957(3)
	Se1	3.0928(14)		Se2	2.957(3)
	S4	3.1166(16)		S2	2.957(3)
Gel	S2	2.253(3)		Se2	2.957(3)
	Se3	2.280(2)		S2	2.957(3)
	S3	2.280(2)			
	Se4	2.2986(18)			

Atom Pairs		Distances (Å)	Atom Pai	rs	Distances (Å)
	S4	2.2986(18)			
Gel	S 1	2.3128(18)			
		La ₄ Ge	$e_3Se_8S_4$		
Lal	S2	2.937(4)	La2	Se2	2.957(4)
	Se3	2.954(3)		S2	2.957(4)
	S3	2.954(3)		Se2	2.957(4)
	S3	3.079(3)		S2	2.957(4)
	Se4	3.083(3)		S2	2.957(4)
	S4	3.083(3)		Se2	2.973(4)
	S 1	3.109(2)		S2	2.973(4)
	Se1	3.109(2)		Se2	2.973(4)
	S4	3.128(3)		S2	2.973(4)
Gel	S2	2.269(4)		Se2	2.973(4)
	Se3	2.309(3)		S2	2.973(4)
	S3	2.309(3)			
	Se4	2.319(3)			
	S4	2.319(3)			
	S1	2.325(3)			
		La ₄ Ge	$e_3Se_{10}S_2$		
Lal	S2	2.971(3)	La2	Se2	2.978(3)
	Se3	2.9745(19)		S2	2.978(3)
	S3	2.9745(19)		Se2	2.978(3)
	Se4	3.086(2)		S2	2.978(3)
	S4	3.086(2)		S2	2.978(3)
	S3	3.103(2)		Se2	2.997(3)
	Se1	3.1272(19)		S2	2.997(3)
	S4	3.136(2)		Se2	2.997(3)
	Se1	3.188(2)		S2	2.997(3)
Gel	S2	2.309(3)		Se2	2.997(3)
	Se4	2.332(2)		S2	2.997(3)

Atom Pa	airs	Distances (Å)	Atom Pairs	Distances (Å)
	S4	2.332(2)		
	Se1	2.333(2)		
Gel	Se3	2.339(3)		
	S3	2.339(3)		

gure S1. The calculated and experimental X-ray diffraction patterns of La₄Ge₃S_{12.}

gure S2. The calculated and experimental X-ray diffraction patterns of La₄Ge₃Se₂S₁₀.

gure S3. The calculated and experimental X-ray diffraction patterns of La₄Ge₃Se₄S_{8.}

gure S4. The calculated and experimental X-ray diffraction patterns of La₄Ge₃Se₆S_{6.}

gure S5. The calculated and experimental X-ray diffraction patterns of La₄Ge₃Se₈S_{4.}

Figure S6. The calculated and experimental X-ray diffraction patterns of La₄Ge₃Se₁₀S₂.

Figure S7. A comparison of Se contents and unit cell volume in $La_4Ge_3Se_xS_{12-x}$ (x = 0, 2, 4, 6, 8, 10), emphasizing the linear increase of volume as Se is incorporated into the crystal structure.

gure S8. Tauc plots for allowed direct and indirect transitions of La₄Ge₃S₁₂.

gure S9. Tauc plots for allowed direct and indirect transitions of La₄Ge₃Se₂S_{10.}

gure S10. Tauc plots for allowed direct and indirect transitions of La₄Ge₃Se₄S_{8.}

Figure S11. Tauc plots for allowed direct and indirect transitions of La₄Ge₃Se₆S₆.

gure S12. Tauc plots for allowed direct and indirect transitions of La₄Ge₃Se₈S₄.

gure S13. Tauc plots for allowed direct and indirect transitions of $La_4Ge_3Se_{10}S_{2.}$

Figure S14. SHG intensities of $La_4Ge_3Se_4S_8$ and $AgGaS_2$ @2.09 µm measured at variable particle size samples.

Figure S15. SHG intensities of $La_4Ge_3Se_6S_6$ and AgGaS2 @2.09 µm measured at variable particle size samples.

Figure S16. SHG intensities of $La_4Ge_3Se_8S_4$ and $AgGaS_2$ @2.09 µm measured at variable particle size samples.

Figure S17. Calculated birefringence of $La_4Ge_3S_{12}$ versus wavelength of the fundamental light.

Figure S18. Calculated birefringence of $La_4Ge_3Se_6S_6$ versus wavelength of the fundamental light.

Spectrum	Normalized Composition
	La _{4.1} Ge ₃ Se _{2.2} S _{9.6}

