Reductive Silylation of Polyoxovanadate Surfaces using Mashima's Reagent

Sourav Chakraborty and Ellen M. Matson*

Department of Chemistry, University of Rochester, Rochester, New York 14627, USA.

Corresponding author email: <u>matson@chem.rochester.edu</u>

Supporting Information Table of contents.

Fig. S1: ¹ H NMR spectra of $1-V_6O_7^{1-}$ and $2-V_6O_6^{1-}$
Fig. S2: LC-MS of pentane wash of the reaction of $1-V_6O_7^{1-}$ with 1 equiv $Pyz(SiMe_3)_2$
Fig. S3: ¹ H NMR spectrum of 2-V ₆ O ₆ ¹⁻ synthesis (crude)S3
Fig. S4: ¹ H NMR spectrum of 3-V ₆ O ₆ (OSiMe ₃) ¹⁻ synthesisS3
Fig. S5: ¹ H NMR spectrum of pure 3-V ₆ O ₆ (OSiMe ₃) ¹⁻ S3
Fig. S6: ¹ H NMR spectrum of 2-V₆O₆¹⁻
Fig. S7: LC-MS of pentane wash of the reaction of 3-V ₆ O ₆ (OSiMe ₃) ¹⁻ with 0.5 equiv Pyz(SiMe ₃) ₂
Fig. S8: ¹ H NMR spectrum of 5-V ₆ O ₆ (OSiMe ₃) ²⁻
Fig. S9: ¹ H NMR spectrum of $6-V_6O_7^0$ and the crude reaction mixture following the addition of 0.5 equiv of Pyz(SiMe ₃) ₂ to $6-V_6O_7^0$
Fig. S10: ¹ H NMR spectrum of the crude reaction mixture following the addition of 1 equiv of Pyz(SiMe ₃) ₂ to 6-V₆O₇⁰
Fig.S11: ¹ H NMR spectrum of $3-V_6O_6OSiMe_3^{1-}$ oxidation with 1.0 equiv AgOTfS6
Fig. S12: Thermal degradation of 3-V ₆ O ₆ OSiMe ₃ ¹⁻ S6
Fig. S13: ¹ H NMR spectrum of the reaction following the addition of 0.5 equiv of $Pyz(SiMe_3)_2$ to $1-V_6O_7^{1-}$ in acetonitrile
Fig. S14: ¹ H NMR spectrum of the reaction following the addition of 0.55 equiv of $Pyz(SiMe_3)_2$ to $1-V_6O_7^{1-}$ in dichloromethaneS7

Fig. S1. ¹H NMR (500 MHz, CD₃CN, 21 °C) spectra of 1-V₆O₇¹⁻ and 2-V₆O₆¹⁻.

Fig. S2. LC-MS of pentane wash of the reaction of $1-V_6O_7^{1-}$ with 1equiv Pyz(SiMe₃)₂ in dichloromethane. The peak at m/z = 163 (M+H⁺) amu corresponds to (Me₃Si)₂O.

Fig. S3. ¹H NMR (500 MHz, CD₃CN, 21 °C) spectrum of the crude reaction mixture following the addition of 1 equiv of Pyz(SiMe₃)₂ to $1-V_6O_7^{1-}$ in dichloromethane to form $2-V_6O_6^{1-}$. The peak integration for 36 protons of $2-V_6O_6^{1-}$ correspond to 3, *i.e.* integration for each proton is 0.083. The integration of 8.57 ppm (for pyrazine) stands for 4 protons and the integration of 0.06 ppm (TMS₂O) stands for 18 protons. This represents formation of one equivalent of pyrazine and TMS₂O.

Fig. S4.. ¹H NMR (500 MHz, CD₃CN, 21 °C) spectrum of the crude reaction mixture of **3**- $V_6O_6(OSiMe_3)^{1-}$. The peak at 8.58 ppm (CD₃CN, 21°C) signifies the formation of pyrazine.

Fig. S5. ¹H NMR (500 MHz, CD₃CN, 21 °C) spectrum of **3-V₆O₆(OSiMe₃)¹⁻**.

Fig. S6. ¹H NMR (500 MHz, CD₃CN, 21 °C) spectrum of $2-V_6O_6^{1-}$ formed as a product of the reaction between $3-V_6O_6(OSiMe_3)^{1-}$ and 0.5 equiv. Pyz(SiMe₃)₂ in dichloromethane at low temperature.

Fig. S7. LC-MS of pentane wash of the reaction of $3-V_6O_6(OSiMe_3)^{1-}$ with 0.5 eq. Pyz(SiMe_3)₂ in dichloromethane. The peak at m/z = 81 (M+H⁺) amu and m/z = 163 (M+H⁺) amu correspond to pyrazine and (Me_3Si)₂O respectively.

Fig. S8. ¹H NMR (500 MHz, CD₃CN, 21 °C) spectrum of (a) the crude reaction mixture of the synthesis of $5-V_6O_6(OSiMe_3)^{2-}$, and (b) $5-V_6O_6(OSiMe_3)^{2-}$ following work-up.

Fig. S9. ¹H NMR (500 MHz, CD₃CN, 21 °C) spectrum of (a) $6-V_6O_7^0$, (b) the crude reaction mixture following the addition of 0.5 equiv of Pyz(SiMe₃)₂ to $6-V_6O_7^0$ in acetonitrile.

Fig. S10. ¹H NMR (500 MHz, CD₃CN, 21 °C) spectrum of the crude reaction mixture following the addition of 1 equiv of Pyz(SiMe₃)₂ to $6-V_6O_7^0$ in acetonitrile.

Fig. S11. ¹H NMR (500 MHz, CD₃CN, 21 °C) spectrum of the oxidation of $3-V_6O_6OSiMe_3^{1-}$ with 1.0 equiv of AgOTf (E_{1/2} = +0.65 V vs. Fc^{+/0}) in dichloromethane.

Fig. S12. ¹H NMR (500 MHz, CD₃CN, 21 °C) spectra of the thermal degradation of 3-V₆O₆OSiMe₃¹⁻ in CD₃CN, 65°C. The red stars represent $3-V_6O_6OSiMe_3$ ¹⁻, blue circles stand for $1-V_6O_7$ ¹⁻ and the pink squares denote $2-V_6O_6$ ¹⁻.

Fig. S13. ¹H-NMR (500 MHz, CD₃CN, 21 °C) spectrum of the reaction following the addition of 0.5 equiv of $Pyz(SiMe_3)_2$ to $1-V_6O_7^{1-}$ in acetonitrile.

Fig. S14 ¹H-NMR (500 MHz, CD₃CN, 21 °C) spectrum of the reaction following the addition of 0.55 equiv of $Pyz(SiMe_3)_2$ to $1-V_6O_7^{1-}$ in dichloromethane.