Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers.

Supporting information

for

Blue-Light-Excited Narrowing Red Photoluminescence in Lead-Free Double Perovskite Cs_{2-x}K_xAg_{0.6}Na_{0.4}In_{0.8}Bi_{0.2}Cl_{6-x}Br_x with Cryogenic Effect

Xiao-Kai Gong, Xiao-Song Zhang*, Ru-Kun Ding, Hao Yin, Zhao-Wei Zhang, Lan Li, Jian-Ping Xu, Qian Li, Long Liu, Yue-Ming Zhang, Chao Li, Liu Pei

Key Laboratory of Display Materials and Photoelectric Devices, Ministry of Education, Tianjin Key Laboratory for Photoelectric Materials and Devices and School of Materials Science and Engineering, Institute of Material Physics, Tianjin University of Technology, Tianjin 300384, China *Corresponding author E-mail: <u>zhangxiaosong022@126.com</u> (Xiao-Song Zhang*)

Table S1. The ICP results of Cs_{2-x}K_xAg_{0.6}Na_{0.4}In_{0.8}Bi_{0.2}Cl_{6-x}Br_x.

To make our ICP-MS results more reliable, blank and standard samples were first used to calibrate the equipment. Then, we measured K and Cs content in $Cs_{2-x}K_xAg_{0.6}Na_{0.4}In_{0.8}Bi_{0.2}Cl_{6-x}Br_x$ solution dissolved by HNO₃. This data was used to compute the K/Cs ratio of $Cs_{2-x}K_xAg_{0.6}Na_{0.4}In_{0.8}Bi_{0.2}Cl_{6-x}Br_x$.

$Cs_{2\text{-}x}K_{x}Ag_{0.6}Na_{0.4}In_{0.8}Bi_{0.2}Cl_{6\text{-}x}Br_{x}$	K (ug/L)	Cs (ug/L)	K %	Cs %
1:0	0	167.478	0	100
1:0.1	29.649	310.236	24.52	75.48
1:0.4	32.171	137.211	44.35	55.65
1:0.6	32.331	101.524	51.98	48.02
1:1	70.152	182.230	56.68	43.32
1:1.2	44.776	164.838	48.01	51.99

Figure S1. (a) Survey-scan XPS spectra of $Cs_2Ag_{0.6}Na_{0.4}In_{0.8}Bi_{0.2}Cl_6$ (1:0) and $Cs_{2-x}K_xAg_{0.6}Na_{0.4}In_{0.8}Bi_{0.2}Cl_{6-x}Br_x$ (1:1). High resolution XPS spectra of: (b) Cs 3d, (c) Ag 3d, (d) Na 1s, (e) K 2p, (f) In 3d, (g) Bi 4f, (h) Cl 2p, (i) Br 3d and (j) C 1s.

Table S2. Fitting values of τ_1 , A_1 , τ_2 , A_2 and τ_{av} at 10 K.

$Cs_{2-x}K_{x}Ag_{0.6}Na_{0.4}In_{0.8}Bi_{0.2}Cl_{6-x}Br_{x}$ (1:1)	$\tau_1(us)$	A_{l}	$\tau_2(us)$	A_2	$ au_{av}(us)$
λ_{ex} = 365 nm	15.30	98	46.90	2	15.97
$\lambda_{ex} = 467 \text{ nm}$	25.33	76	72.84	24	36.69

Figure S2. PLE spectra of $Cs_{2-x}K_xAg_{0.6}Na_{0.4}In_{0.8}Bi_{0.2}Cl_{6-x}Br_x$ at (a) 10 K and (b) room temperature.

Figure S3. PLE spectra of (a) 1:0.0, (b) 1:0.2, (c) 1:0.4, (d) 1:0.6, (e) 1:1.0 and (f) :1.2 at 10 K.

Figure S4. Time-resolved PL spectra of $Cs_{2-x}K_xAg_{0.6}Na_{0.4}In_{0.8}Bi_{0.2}Cl_{6-x}Br_x$ excited at (a) 365 nm and (b) 467 nm at 10 K.

10 K (λ_{ex} = 365 nm)	$\tau_1(us)$	A_1	$\tau_2(us)$	A_2	$\tau_{av}(us)$
1:0	12.16	98	28.60	2	12.53
1:0.2	11.97	97	23.95	3	12.36
1:0.4	12.62	99	44.96	1	13.05
1:0.6	10.74	97	29.71	3	11.40
1:1	15.30	98	46.90	2	15.97
1:1.2	10.18	99	54.04	1	10.61

Table S3. Fitting values of τ_1 , A_1 , τ_2 , A_2 and τ_{av} at 10 K.

Table S4. Fitting values of τ_1 , A_1 , τ_2 , A_2 and τ_{av} at 10 K.

$10 \text{ K} (\lambda_{ex} = 467 \text{ nm})$	$\tau_1(us)$	A_1	$\tau_2(us)$	A_2	$\tau_{av}(us)$
1:0.4	15.35	85	42.69	15	19.51
1:0.6	11.54	51	3.20	49	7.43
1:1	25.33	76	72.84	24	36.69
1:1.2	2.24	71	9.53	29	4.36

Figure S5. Time-resolved PL spectra of $Cs_2Ag_{0.6}Na_{0.4}In_{0.8}Bi_{0.2}Cl_6$ (1:0) and $Cs_{2.3}K_xAg_{0.6}Na_{0.4}In_{0.8}Bi_{0.2}Cl_{6-x}Br_x$ (1:1) excited at 365 nm at room temperature.

RT $(\lambda_{ex} = 365 \text{ nm})$	$\tau_1(us)$	<i>A</i> ₁ %	$\tau_2(us)$	<i>A</i> ₂ %	$\tau_3(us)$	<i>A</i> ₃ %	$ au_{av}(us)$
1:0	5.25	40	5.51	40	1.89	20	4.69
1:1	4.22	29	3.96	49	3.53	21	3.94

Table S5. Fitting values of τ_1 , A_1 , τ_2 , A_2 , τ_3 , A_3 and τ_{av} at room temperature (RT).

$\frac{Cs_{2-x}K_{x}Ag_{0.6}Na_{0.4}In_{0.8}Bi_{0.2}Cl_{6-x}Br_{x}}{(180-300k)}$	<i>I</i> (0)	$\Delta E / meV$	A
1:0 (λ_{ex} = 365 nm)	85891.3	178.68	851.95
1:0.2 (λ_{ex} = 365 nm)	95276.66	153.33	223.69
1:0.4 (λ_{ex} = 365 nm)	100691.68	148.78	301.76
1:0.6 (λ_{ex} = 365 nm)	62715.98	132.04	123.20
1:1.0 (λ_{ex} = 365 nm)	103966.91	129.84	202.06
1:1.2 (λ_{ex} = 365 nm)	53882.29	118.77	31.63

Table S6. Fitting parameters of I(0), A and ΔE at 365 nm excitation.

Table S7. Fitting parameters of I(0), A and ΔE at 467 nm excitation.

$Cs_{2-x}K_xAg_{0.6}Na_{0.4}In_{0.8}Bi_{0.2}Cl_{6-x}Br_x$ (10- 180k)	<i>I</i> (0)	$\Delta E / meV$	A
1:0.4 (λ_{ex} = 467 nm)	234762.4	42.55	75.18
1:0.6 (λ_{ex} = 467 nm)	126282.3	43.85	206.58
1:1.0 (λ_{ex} = 467 nm)	65312.81	53.74	372.22
1:1.2 (λ_{ex} = 467 nm)	141479.6	44.93	388.31

Cs _{2-x} K _x Ag _{0.6} Na _{0.4} In _{0.8} Bi _{0.2} Cl _{6-x} Br _x (180- 300k)	Eg(0)/ eV	S	$\langle\eta\omega angle$ / meV
1:0 (λ_{ex} = 365 nm)	2.03	4.31	28.08
1:0.2 (λ_{ex} = 365 nm)	2.03	3.77	22.36
1:0.4 (λ_{ex} = 365 nm)	2.03	3.83	29.23
1:0.6 (λ_{ex} = 365 nm)	2.03	4.38	22.04
1:1 (λ_{ex} = 365 nm)	2.03	4.47	30.80
1:1.2 (λ_{ex} = 365 nm)	2.04	3.41	16.18

Table S8. Fitting parameters of Eg(0), S and $\langle \eta \omega \rangle$ at 467 nm excitation.

Table S9. Fitting parameters of Eg(0), S and $\langle h\omega \rangle$ at 467 nm excitation.

$Cs_{2\text{-}x}K_{x}Ag_{0.6}Na_{0.4}In_{0.8}Bi_{0.2}Cl_{6\text{-}x}Br_{x}\left(10\text{-}150k\right)$	Eg(0)/eV	S	$\langle h \omega \rangle / m e V$
1:0.4 (λ_{ex} = 467 nm)	2.05	0.50	5.30
1:0.6 (λ_{ex} = 467 nm)	2.06	0.75	25.12
1:1.0 (λ_{ex} = 467 nm)	2.04	0.94	1.96
1:1.2 (λ_{ex} = 467 nm)	2.05	1.20	93.49

Cs _{2-x} K _x Ag _{0.6} Na _{0.4} In _{0.8} Bi _{0.2} Cl _{6-x} Br _x (10- 180k)	Γ_0/meV	Γ_{op}/meV	$\eta \omega_{_{ m op}}/meV$
1:0 (λ_{ex} = 365 nm)	399.93	138.28	13.10
1:0.2 (λ_{ex} = 365 nm)	393.97	89.70	8.83
1:0.4 (λ_{ex} = 365 nm)	387.17	215.57	16.01
1:0.6 (λ_{ex} = 365 nm)	378.16	688.30	22.70
1:1 (λ_{ex} = 365 nm)	377.57	132.56	11.16
1:1.2 (λ_{ex} = 365 nm)	362.18	49.44	4.51

Table S10. Fitting parameters of Γ_0 , Γ_{op} and $\eta \omega_{op}$ at 365 nm excitation wavelength.

Table S11. Fitting parameters of Γ_0 , Γ_{op} and $\eta \omega_{op}$ at 467 nm excitation wavelength.

$Cs_{2-x}K_xAg_{0.6}Na_{0.4}In_{0.8}Bi_{0.2}Cl_{6-x}Br_x$ (10-150k)	Γ_0/meV	Γ_{op}/meV	$\eta \omega_{_{ m op}}/meV$
1:0.4 (λ_{ex} = 467 nm)	301.61	2828.32	40.00
1:0.6 (λ_{ex} = 467 nm)	316.67	4378.67	41.71
1:1 (λ_{ex} = 467 nm)	280.06	5353.20	46.49
1:1.2 (λ_{ex} = 467 nm)	302.59	1705.16	35.43