Supporting Information

Carbon-Doping Induced Energy Band Modification and Vacancy in $\mathbf{S n S}_{\mathbf{2}}$ Nanosheets for Room-temperature ppb-Level $\mathbf{N O}_{\mathbf{2}}$ Detection

Ruozhen Wu ${ }^{a}$, Juanyuan Hao ${ }^{* a, b}$, Tingting Wang ${ }^{a}$, Shengliang Zheng ${ }^{a}$ and You Wang * a, b
${ }^{\text {a School of Materials Science and Engineering, Harbin Institute of Technology, Harbin }}$ 150001, P. R. China.
${ }^{\text {b }}$ Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Ministry of Education, Harbin 150001, P. R. China
*E-mail: jyhao@hit.edu.cn and y-wang@hit.edu.cn

Fig. S1 Homemade chemical gas sensing analysis system. The gas test box is placed in a cyclic damp heat test instrument (left) with the controllable temperature and relative humidity.

Fig. S2 TEM image of pristine SnS_{2}. The morphology of pristine SnS_{2} showed hexagonal plate-like structure with uniform lateral size of $\sim 400 \mathrm{~nm}$.

Fig. S3 TEM image of the $\mathrm{C}-\mathrm{SnS}_{2}-32$ sample. It indicates the obvious mesoporous nanostructures in the $\mathrm{C}-\mathrm{SnS}_{2}-32$ nanosheets.

Fig. S4 N_{2} sorption isotherms at 77 K of (a) $\mathrm{C}_{-\mathrm{SnS}_{2}-32}$ and (b) pristine SnS_{2}. The BET surface area of $\mathrm{C}-\mathrm{SnS}_{2}-32$ nanosheets was measured to be $26.6 \mathrm{~m}^{2} \mathrm{~g}^{-1}$, which was 2.5 times larger than that of pristine $\mathrm{SnS}_{2}\left(10.7 \mathrm{~m}^{2} \mathrm{~g}^{-1}\right)$, which indicates that the adsorption capacity of NO_{2} is improved on the C -doped SnS_{2} surface.

Fig. S5 High-resolution O 1s XPS spectra for the C-SnS $2_{2}-32$. The peak centred at 531.9 eV is assigned to the surface adsorbed oxygen. ${ }^{[1,2]}$

Fig. S6 High-resolution C 1s XPS spectra for $\mathrm{C}-\mathrm{SnS}_{2}-8$ and $\mathrm{C}-\mathrm{SnS}_{2}-16$. The clear signal of $\mathrm{C}-\mathrm{Sn}$ bond is also found in both of $\mathrm{C}-\mathrm{SnS}_{2}-8$ and $\mathrm{C}-\mathrm{SnS}_{2}-16$, confirming the presence
of C doping in SnS_{2}.

Fig. S7 The peak intensity ratios of $\mathrm{Sn}-\mathrm{C}$ with $\mathrm{C}-\mathrm{O}$ and $\mathrm{C}-\mathrm{C}$ for C -doped SnS_{2}. The peak intensity ratios of the $\mathrm{Sn}-\mathrm{C} / \mathrm{C}-\mathrm{C}$ and the $\mathrm{Sn}-\mathrm{C} / \mathrm{C}-\mathrm{O}$ increase from $\mathrm{C}-\mathrm{SnS}_{2}-8$ to C -$\mathrm{SnS}_{2}-32$, indicating the content of $\mathrm{Sn}-\mathrm{C}$ bond increases with C dopants concentration while the C-C and C-O peaks does not change.

Fig. S8 FT-IR spectra of pristine $\mathrm{SnS}_{2}, \mathrm{C}-\mathrm{SnS}_{2}-8, \mathrm{C}-\mathrm{SnS}_{2}-16$, and $\mathrm{C}-\mathrm{SnS}_{2}-32$. The peak at $\sim 520 \mathrm{~cm}^{-1}$ for C -doped SnS_{2} is assigned to the $\mathrm{Sn}-\mathrm{C}$ stretching, which is absent in pristine SnS_{2}, supporting that C is doping into SnS_{2} crystals.

Fig. S9 Baseline resistance of pristine $\mathrm{SnS}_{2}, \mathrm{C}-\mathrm{SnS}_{2}-8, \mathrm{C}-\mathrm{SnS}_{2}-16$, and $\mathrm{C}-\mathrm{SnS}_{2}-32$. The baseline resistance sharply declined after C doping, from $\sim 3000 \mathrm{M} \Omega$ of pristine SnS_{2} to $\sim 130 \mathrm{M} \Omega$ of $\mathrm{C}-\mathrm{SnS}_{2}-32$, indicating that the C doping dramatically enhanced the electron concentration and the conductivity of SnS_{2}.

Fig. S10 Dynamic response-recovery curve of $\mathrm{C}-\mathrm{SnS}_{2}-32$ to diverse NO_{2} concentrations from 4 ppm to 10 ppm . The result indicates that the response value of $\mathrm{C}-\mathrm{SnS}_{2}-32$ sensor increases with increasing NO_{2} concentration and the signal completely returns to initial state after NO_{2} release.

Fig. S11 A temporal trace of experimentally recorded noise of response for the sample $\mathrm{C}-\mathrm{SnS}_{2}-32$. The result indicates that the root-mean-square value of response noise is approximate $\sim 0.12 \%$.

Fig. S12 UV-Vis diffuse reflectance spectroscopy of the $\mathrm{C}-\mathrm{SnS}_{2}-32$ and pristine SnS_{2}. The inset of is Tauc plot with indirect bandgap fitting. The characterization of UV-Vis diffuse reflectance spectroscopy indicates the conspicuously narrowed bandgap structure from 2.11 to 1.75 eV after C doping.

Fig. S13 KPFM measured work function area scans of the $\mathrm{C}-\mathrm{SnS}_{2}-32$ and pristine SnS_{2}. The measurement of KPFM indicates the elevation of Fermi energy level from 4.81 to 4.61 eV after C doping.

References

[1] H. Chen, Y. Zhao, L. Shi, G.-D. Li, L. Sun and X. Zou, Revealing the relationship between energy level and gas sensing performance in heteroatom-doped semiconducting nanostructures, ACS Appl. Mater. Interfaces, 2018, 10, 29795-29804. [2] Q. Yang, Y. Wang, J. Liu, J. Liu, Y. Gao, P. Sun, Z. Jie, T. Zhang, Y. Wang and G. Lu , Enhanced sensing response towards NO_{2} based on ordered mesoporous Zr -doped $\mathrm{In}_{2} \mathrm{O}_{3}$ with low operating temperature, Sens, Actuators, $B, 2017,241,806-813$.

