Supporting Information

Carbon-Doping Induced Energy Band Modification and Vacancy in SnS₂ Nanosheets for Room-temperature ppb-Level NO₂ Detection

Ruozhen Wu^a, Juanyuan Hao^{*a,b}, Tingting Wang^a, Shengliang Zheng^a and You Wang *_{a,b}

^aSchool of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.

^bKey Laboratory of Micro-Systems and Micro-Structures Manufacturing, Ministry of Education, Harbin 150001, P. R. China

*E-mail: jyhao@hit.edu.cn and y-wang@hit.edu.cn

Fig. S1 Homemade chemical gas sensing analysis system. The gas test box is placed in a cyclic damp heat test instrument (left) with the controllable temperature and relative humidity.

Fig. S2 TEM image of pristine SnS_2 . The morphology of pristine SnS_2 showed hexagonal plate-like structure with uniform lateral size of ~400 nm.

Fig. S3 TEM image of the $C-SnS_2-32$ sample. It indicates the obvious mesoporous nanostructures in the $C-SnS_2-32$ nanosheets.

Fig. S4 N₂ sorption isotherms at 77 K of (a) C-SnS₂-32 and (b) pristine SnS₂. The BET surface area of C-SnS₂-32 nanosheets was measured to be 26.6 m²g⁻¹, which was 2.5 times larger than that of pristine SnS₂ (10.7 m²g⁻¹), which indicates that the adsorption capacity of NO₂ is improved on the C-doped SnS₂ surface.

Fig. S5 High-resolution O 1s XPS spectra for the C-SnS₂-32. The peak centred at 531.9 eV is assigned to the surface adsorbed oxygen.^[1,2]

Fig. S6 High-resolution C 1s XPS spectra for C-SnS₂-8 and C-SnS₂-16. The clear signal of C-Sn bond is also found in both of C-SnS₂-8 and C-SnS₂-16, confirming the presence

of C doping in SnS₂.

Fig. S7 The peak intensity ratios of Sn-C with C-O and C-C for C-doped SnS_2 . The peak intensity ratios of the Sn-C/C-C and the Sn-C/C-O increase from C-SnS₂-8 to C-SnS₂-32, indicating the content of Sn-C bond increases with C dopants concentration while the C-C and C-O peaks does not change.

Fig. S8 FT-IR spectra of pristine SnS_2 , C- SnS_2 -8, C- SnS_2 -16, and C- SnS_2 -32. The peak at ~520 cm⁻¹ for C-doped SnS_2 is assigned to the Sn-C stretching, which is absent in pristine SnS_2 , supporting that C is doping into SnS_2 crystals.

Fig. S9 Baseline resistance of pristine SnS_2 , C- SnS_2 -8, C- SnS_2 -16, and C- SnS_2 -32. The baseline resistance sharply declined after C doping, from ~3000 M Ω of pristine SnS_2 to ~130 M Ω of C- SnS_2 -32, indicating that the C doping dramatically enhanced the electron concentration and the conductivity of SnS_2 .

Fig. S10 Dynamic response-recovery curve of $C-SnS_2-32$ to diverse NO_2 concentrations from 4 ppm to 10 ppm. The result indicates that the response value of $C-SnS_2-32$ sensor increases with increasing NO_2 concentration and the signal completely returns to initial state after NO_2 release.

Fig. S11 A temporal trace of experimentally recorded noise of response for .the sample C-SnS₂-32. The result indicates that the root-mean-square value of response noise is approximate ~0.12%.

Fig. S12 UV-Vis diffuse reflectance spectroscopy of the $C-SnS_2-32$ and pristine SnS_2 . The inset of is Tauc plot with indirect bandgap fitting. The characterization of UV-Vis diffuse reflectance spectroscopy indicates the conspicuously narrowed bandgap structure from 2.11 to 1.75 eV after C doping.

Fig. S13 KPFM measured work function area scans of the $C-SnS_2-32$ and pristine SnS_2 . The measurement of KPFM indicates the elevation of Fermi energy level from 4.81 to 4.61 eV after C doping.

References

 H. Chen, Y. Zhao, L. Shi, G.-D. Li, L. Sun and X. Zou, Revealing the relationship between energy level and gas sensing performance in heteroatom-doped semiconducting nanostructures, *ACS Appl. Mater. Interfaces*, 2018, **10**, 29795-29804.
Q. Yang, Y. Wang, J. Liu, J. Liu, Y. Gao, P. Sun, Z. Jie, T. Zhang, Y. Wang and G. Lu, Enhanced sensing response towards NO₂ based on ordered mesoporous Zr-doped In₂O₃ with low operating temperature, *Sens, Actuators, B*, 2017, **241**, 806-813.