Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2021

Supporting Information

 $ZIF-67-derived\ NiCo_2O_4@Co_2P/Ni_2P\ honeycomb\ nanosheets\ on\ carbon\ cloth\ for\ high-$

performance asymmetric supercapacitors

Wen-wei Song,^a Bing Wang,^a Xiao-man Cao,^{*b} Qiang Chen,^a and Zheng-bo Han^{*a}

^a College of Chemistry, Liaoning University, Shenyang 110036, P. R. China E-mail:

ceshzb@Inu.edu.cn

^b College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, P.R.

China E-mail: <u>caoxiaoman@bhu.edu.cn</u>

Summary

- S1. Supporting experimental section.
- S2. Supporting Figure S1~S11.
- S3. Supporting Table S1.

Electrochemical Calculation

Capacitances of single electrode

The areal capacitance of a single electrode in three-electrode system can be calculated based on galvanostatic charge-discharge experiments according to equations:

$$C_{s} = \frac{I\Delta t}{S\Delta V} \tag{1}$$

Where C_s (F cm⁻²) represents the areal capacitance, *I* is the discharge current (A), Δt represents the discharge time (s), *S* (cm²) is the apparent area of actives materials loaded in working electrode, and ΔV is the potential window (V).

Capacitances of ASC devices

The volume specific capacitance of $NiCo_2O_4@Co_2P/Ni_2P-CC//AC/CC$ devices can be calculated based on galvanostatic charge-discharge experiments according to equations:

$$C_{V} = \frac{I\Delta t}{V\Delta V}$$
(2)

Where C_v (F cm⁻³) represents the volume specific capacitance, *I* is the discharge current (A), Δt represents the discharge time (s), *V* (cm³) represents the apparent volume of actives materials loaded in working electrode and ΔV is the potential window (V).

In order to obtain more stable electrochemical performance, the positive and negative electrodes should follow the principle of equal capacitance. The relationship between positive and negative capacitance can be determined by the following equations equations:

$$Q = C_s \times \Delta V \times S \tag{3}$$

$$Q_{+} = Q_{-} \tag{4}$$

$$\frac{C_{s,-}}{C_{s,+}} = \frac{S_+ \times \Delta V_+}{S_- \times \Delta V_-}$$
(5)

Where *Q* is the charge of the electrode, *C*_s represents the areal capacitance of the electrode, ΔV represents the potantial window of the electrode, and *S* is the area of the electrode material. In this work, the active area of AC/CC and NiCo₂O₄@Co₂P/Ni₂P-CC was 1 cm². In addition, $\Delta V_{-}=1$ V and $\Delta V_{+}=0.6$ V. According to the calculation (5), the ratio of areal capacitance of AC/CC and NiCo₂O₄@Co₂P/Ni₂P-CC was 0.6. Therefore, the areal capacitance of AC/CC should be adjusted to 1729.13 mF cm⁻² at a current density of 2 mA cm⁻².

The energy density (*E*, mWh cm⁻³) and power density (*P*, mW cm⁻³) are calculated by the following equations:

$$E = \frac{\int IVdt}{V_{\rm v}} \tag{6}$$

$$P = \frac{E}{\Delta t} \tag{7}$$

Where V represents the potential window, V_v represents the volume of device and Δt represents the diacharge time.

Figure S1. (a, b) SEM images of CC. (c) SEM images of ZIF-67-CC- I . (d) SEM images of ZIF-67-CC- II . (e) SEM images of ZIF-67-CC-III. (f) SEM images of ZIF-67-CC-IV.

Figure S2. (a) Picture of ZIF-67-CC. (b) Picture of Co-Ni LDH-CC. (c) Picture of NiCo₂O₄-CC. (d) Picture of NiCo₂O₄@Co₂P/Ni₂P-CC.

Figure S3. (a) AFM images of ZIF-67-CC. (b) AFM images of Co-Ni LDH-CC. (c) AFM images of NiCo₂O₄@Co₂P/Ni₂P-CC.

Figure S4. EDS point scan test results of NiCo₂O₄@Co₂P/Ni₂P-CC.

Figure S5. HRTEM images of NiCo₂O₄@Co₂P/Ni₂P-CC.

Figure S6. (a) PXRD patterns of Co-Ni LDH-CC. (b) PXRD patterns of NiCo₂O₄-CC. (c) PXRD patterns of NiCo₂O₄@Co₂P/Ni₂P-CC.

Figure S7. (a) Survey spectra of $NiCo_2O_4@Co_2P/Ni_2P$ -CC. (b, c and d) C 1s, N 1s and O 1s high-resolution XPS spectra of $NiCo_2O_4@Co_2P/Ni_2P$ -CC.

Figure S8. (a) The areal capacitance and specific capacitance of Co-Ni LDH-CC, NiCo₂O₄-CC and NiCo₂O₄@Co₂P/Ni₂P-CC at different current density from 2 to 20 mA cm⁻². (b) The areal capacitance retention of Co-Ni LDH-CC, NiCo₂O₄-CC and NiCo₂O₄@Co₂P/Ni₂P-CC at different current density from 2 to 20 mA cm⁻².

Figure S9. (a) CV curves of NiCo₂O₄@Co₂P/Ni₂P-CC on different phosphatization time from 1 h to 3 h at a scan rate of 10 mV s⁻¹. (b) GCD curves of NiCo₂O₄@Co₂P/Ni₂P-CC on different phosphatization time from 1 h to 3 h at a current density of 2 mA cm⁻². (c) SEM images of NiCo₂O₄@Co₂P/Ni₂P-CC on phosphatization time of 3 h.

Figure S10. (a) CV curve of NiCo₂O₄@Co₂P/Ni₂P-CC and AC/CC at scan rate of 10 mV s⁻¹. (b) CV curves of NiCo₂O₄@Co₂P/Ni₂P-CC and AC/CC at different voltage window at a scan rate of 10 mV s⁻¹. (c) Areal capacitance of NiCo₂O₄@Co₂P/Ni₂P-CC/AC/CC at different current from 2 to 20 mA cm⁻². (d) Specific capacitance of NiCo₂O₄@Co₂P/Ni₂P-CC/AC/CC at different current density from 2 to 20 mA cm⁻².

Figure S11. (a) SEM and (b) XRD images of NiCo2O4@Co2P/Ni2P-CC electrode material after10000cyclesbycharge-dischargecycleat2mAcm-2.

Туре	Morphology	Electrolyte	Scan rate/ current density	Capancitance	Ref.
CoO@MnO ₂	Nanosheets arrays	6 М КОН	2 mA cm ⁻²	2.4 F cm ⁻²	1
Zn-Ni-Co TOH	Nanowire array	1 M KOH	3 mA cm ⁻²	2.14 F cm ⁻²	2
CoO/Co ₉ S ₈ @CN	Nanocage cluster	6 М КОН	0.5 A g ⁻¹	303.3 F g ⁻¹	3
Ni(OH) ₂	Nanosheets	6 М КОН	5 mA cm ⁻²	0.863 F cm ⁻²	4
Ni Co-LDH@Au- CuO/Cu	Array	3 М КОН	1.5 mA cm ⁻²	1.97 F cm ⁻²	5
NiNW@NiCo-DH/NF	Nanosheets @Nanowire	6 М КОН	5 mA cm ⁻²	2.25 F cm ⁻²	6
NiCo ₂ O ₄ @MnO ₂	Nanosheets	1 M KOH	5 mA cm ⁻²	2.85 F cm ⁻²	7
Co-Ni LDH-CC	Honeycomb nanosheets	6 М КОН	2 mA cm ⁻²	0.512 F cm ⁻²	This work
NiCo ₂ O ₄ -CC	Honeycomb nanosheets	6 М КОН	2 mA cm ⁻²	1.458 F cm ⁻²	This work
NiCo ₂ O ₄ @Co ₂ P/Ni ₂ P- CC	Honeycomb nanosheets	6 М КОН	2 mA cm ⁻²	2.88 F cm ⁻²	This work

Table S1. Comparison of $NiCo_2O_4@Co_2P/Ni_2P$ -CC with various Ni/Co based electrodes materials for supercapacitor.

References

- 1 X. Z. Wang, Y. H. Xiao, D. C. Su, S. G. Xu, L. M. Zhou, S. D. Wu, L. F. Han, S. M. Fang, S. K. Cao, Hierarchical porous cobalt monoxide nanosheets@ultrathin manganese dioxide nanosheet core-shell arrays for high-performance asymmetric supercapacitor, *Int. J. Hydrogen Energy*, 2016, **41**, 13540-13548.
- 2 Z. H. Huang, F. F. Sun, M. Batmunkh, W. H. Li, H. Li, Y. Sun, Q. Zhao, X. Liu, T. Y. Ma, Zincnickel-cobalt ternary hydroxide nanoarrays for high-performance supercapacitors, *J. Mater. Chem. A*, 2019, **7**, 11826-11835.
- 3 C. Shi, M. W. Chen, X. Han, Y. F. Bi, L. L. Huang, K. Zhou, Z. P. Zheng, Thiacalix[4]arenesupported tetradecanuclear cobalt nanocage cluster as precursor to synthesize CoO/Co₉S₈@CN composite for supercapacitor application, *Inorg. Cherm. Front.*, 2018, 5, 1329-1335.
- 4 X. Liu, Y. Yang, X. X. Xing, T. Zou, Z. D. Wang, Y. D. Wang, From water and Ni foam to a Ni(OH)₂@Ni foam binder-fFree supercapacitor electrode: a green corrosion route, *ChemElectroChem*, 2018, **5**, 434-444.
- 5 Y. Q. Guo, X. F. Hong, Y. Wang, Q. Li, J. S. Meng, R. T. Dai, X. Liu, L. He, L. Q. Mai, Multicomponent hierarchical Cu-doped NiCo-LDH/CuO double arrays for ultra-long life hybrid fiber supercapacitor, *Adv. Funct. Mater.*, 2019, **29**, 1809004.
- 6 L. Li, X. Liu, C. Liu, H. Z. Wan, J. Zhang, P. Liang, H. B. Wang, H. Wang, Ultra-long life nickel nanowires@nickel-cobalt hydroxide nanoarrays composite pseudocapacitive electrode: construction and activation mechanism, *Electrochim. Acta*, 2018, **259**, 303-312.
- 7 R. J. Zou, M. F. Yuen, Z. Y. Zhang, J. Q. Hu, W. J. Zhang, Three-dimensional networked NiCo₂O₄/MnO₂ branched nanowire heterostructure arrays on nickel foam with enhanced supercapacitor performance, *J. Mater. Chem. A*, 2015, **3**, 1717-1723.