Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2021

Two Deep-Ultraviolet Nonlinear Optical Monolayers Obtained by the Template - Optimized Design Strategy

Abudukadi Tudi ^{a,b}, Shujuan Han^a, Zhihua Yang ^{* a}, Shilie Pan^{* a}

^aCAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS; Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China.

 ^bCenter of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
To whom correspondence should be addressed : E-mail: slpan@ms.xjb.ac.cn (Shilie Pan).
E-mail: zhyang@ms.xjb.ac.cn (Zhihua Yang)

Contents

Calculations detials.	3
Table. S1 The crystallographic data of BOF.	4
Table S2 The crystallographic data of B ₃ O ₃ F ₃	5
Fig. S1 The PDOS of (a) $B_3O_3F_3$, (b)BOF	6
References	7
	••••

Calculations details

Properties of $B_3O_3F_3$, BOF mono-layer were obtained on the basis of ab initio calculations implemented in the CASTEP package through density functional theory (DFT).¹ The generalized gradient approximation (GGA) ² was adopted, and Perdew-Burke-Ernzerhof (PBE)³ functional was chosen to calculate the exchange-correlation potential, with an energy cutoff of 940 eV under the Norm conserving pseudopotentials. The numerical integration of the Brillouin zone was performed using a 4 × 4× 2 Monkhorst-Pack k-point sampling. We set the layer in the xy plane, and adopted a 20 Å supercell length in the z direction to avoid the interaction between the layers.

BOF									
<i>P</i> 3 <i>m</i> 1 (156)									
Cell parameters									
a (Å)	b ((Å)	c (Å)	α(°)		β(°)	γ(°)		
2.5123	2.5	123	21.8567	90	90		120		
Fractional coordinates									
Atoms		Х		у	у		Z		
B1	B1 0.66667			0.3333	0.33333 (.02753		
01		0.33333		0.6666	0.66667		00295		
F1	F1		0.66667	0.3333	0.33333		08820		
Bond lengths (Å)									
B1-O1			1.547	B1-F1	B1-F1		1.326		
Bond valence sum (BVS)									
B1	2.75	5	01	1.86		F1	0.89		

Table S1. The crystallographic data of BOF

$B_3O_3F_3$										
P31m (157)										
Cell parameters										
a (Å)	b (Å)	c (Å)		α(°)	α(°)		γ(°)		
4.2476	4.24	476	23.7645		90		90	120		
Fractional coordinates										
Atom	X			у		Z				
B1			0.00000 1.00000		0	-0.61353				
B2		-0.33333		0.33333		-0.65963				
O1			0.00000		0.66387		-0.63650			
F1	F1				1.00000		-0.55725			
F2	F2				0.33333		-0.71567			
	Bond lengths (Å)									
B1-0	1	1.529			B2-O1		1.513			
B1-F	1.337			B2-F1		1.332				
Bond valence sum (BVS)										
B1	2.82		B2		2.92		01	2.02		
F1	0.86		F2		0.87					

Table S2. The crystallographic data of $B_3O_3F_3$

Fig. S1 The PDOS of (a) $B_3O_3F_3$, (b) BOF

References

- 1 S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. J. Probert, K. Refson and M. C. Payne, *Z. Kristallogr.*, 2005, **220**, 567.
- 2 J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865.
- 3 A. M. Rappe, K. M. Rabe, E. Kaxiras and J. D. Joannopoulos, *Phys. Rev. B*, 1990, **41**, 1227.