Supporting Information

Robust Hollow TiO₂ Spheres for Lithium/Sodium Ion Batteries with Excellent Cycle Stability and Rate Capability

Menglong Yao, Hongkang Wang,* Ruifeng Qian, Tianhao Yao, Jian-Wen Shi, Yonghong Cheng

State Key Lab of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China

*Corresponding author. E-mail: <u>hongkang.wang@mail.xjtu.edu.cn</u>

Table of Contents

Experimental Section	
Figure S1	4
Figure S2	4
Figure S3	5
Figure S4	6
Figure S5	7
Figure S6	8
Figure S7	9
Figure S8	9
Figure S9	10
Table S1	11
Table S2	12
References	13

Experimental Section

Materials characterization

The microstructures of the products were characterized by scanning electron microscopy (SEM, FEI, Quanta 250F) and (high-resolution) transmission electron microscopy ((HR)TEM, Thermo Fisher, Talos F200X). The phase structures of the products were characterized by X-ray diffraction (XRD) under Cu Ka radiation (k = 1.5418 Å) at 30 kV and 10 mA in the 2 θ range of 10-80°. The Raman spectrum was obtained on Renishaw Raman RE01 Microscope with an excitation laser of 633 nm. Brunauere-Emmette-Teller (BET) method was used to analyze the specific surface area and the pore characteristics, and the nitrogen sorption isotherms were obtained by using a Quantachrome Surface Area Analyzer (ASAP 2020 Plus HD88) at 77 K. The elemental composition and chemical state of the products were analyzed by X-ray photoelectron spectroscopy (XPS) using an ESCALAB Xi⁺ Thermo Fisher XPS instrument.

Electrochemical measurements

The electrochemical properties of the hollow TiO₂ nanospheres were investigated in CR2025 coin-type half-cells. Firstly, the working electrodes were fabricated by casting a slurry on the copper foil, and the slurry was prepared by mixing the active materials (hollow TiO₂), conductive carbon black (ECP-600JD) and polyvinylidene fluoride (PVDF, HSV900, Arkema) with the weight ratio of 7:2:1 and 1-methyl-2pyrrolidinone (NMP, C5H9NO, 99.5%, Macklin) as a solvent. The slurry coated copper foils were then dried under vacuum at 60 °C for 12h. The working electrodes were punched into round sheets with a diameter of 14 mm, and the loading amount of the active material was about 1.2±0.2 mg/cm². LIB/SIB cells were assembled in Arfilled glove box (H₂O < 0.1 ppm, O₂ < 0.1 ppm). For LIBs, the lithium foils were used as the counter electrodes, and Celgard 2400 microporous membranes as the separators. A solution of 1 M LiPF₆ in a 1:1:1 of ethylene carbonate (EC), diethyl carbonate (DEC), and ethylmethyl carbonate (EMC) was used as the electrolyte. For SIBs, the sodium foils were used as the counter electrodes, and the Whatman glass microfiber membranes as the separators. 1M NaClO₄ in EC/DMC (1:1 in volume) with addition of 5 vol% of fluoroethylene carbonate (FEC) was used as the electrolyte. The galvanostatic discharge-charge tests of LIBs and SIBs were performed on a battery test system (Neware BTS, China). Cyclic voltammetry (CV, in the range of 1.0-3.0 V for LIBs, and 0.01-3.0 V for SIBs) and electrochemical impedance spectroscopy (EIS; 0.01-100kHz) were performed on CHI660 (Chenghua, Shanghai) electrochemical workstation.

Figure S1. (a, b) SEM images of the as-prepared phenolic resin spheres at different magnification.

Figure S2. SAED pattern taken on a single TiO_2 hollow sphere.

Figure S3. (a-d) SEM images of the TiO_2 prepared without the presence of phenolic resin nanospheres by solvothermal reaction under static (a, b; 0 r/min) and stirring (c, d; 500 r/min) conditions, respectively. (e-f) SEM images of TiO_2 prepared with the presence of phenolic resin nanospheres by solvothermal reaction under static (a, b; 0 r/min). All the products were annealed in air at 600 °C for 2h.

Figure S4. XRD patterns of TiO_2 prepared without/with the presence of phenolic resin nanospheres by solvothermal reaction under static (0 r/min) and stirring (500 r/min) conditions, followed by annealing in air at 600 °C.

Figure S5. Lithium/Sodium storage behavior of the TiO_2 obtained without the presence of phenolic resin nanospheres by solvothermal reaction under static (0 r/min) condition, followed by annealing in air at 600 °C. (a) Rate performance at various current densities and (b) cycle performance at 1.0 A/g for lithium ion batteries. (c) Rate performance at various current densities and (d) cycle performance at 1.0 A/g for sodium ion batteries. For lithium ion batteries, the gradual capacity increases at 1.0 A/g in Figure S3b can be attributed to the electrochemical activation process of TiO₂ anode. [1, 2]

Figure S6. Lithium/Sodium storage behavior of the TiO_2 obtained without the presence of phenolic resin nanospheres by solvothermal reaction under stirring (500 r/min) condition, followed by annealing in air at 600 °C. (a) Rate performance at various current densities and (b) cycle performance at 1.0 A/g for lithium ion batteries. (c) Rate performance at various current densities and (d) cycle performance at 1.0 A/g for sodium ion batteries.

Figure S7. Lithium/Sodium storage behavior of the TiO_2 with the presence of phenolic resin nanospheres by solvothermal reaction under static (0 r/min) condition. (a) Rate performance at various current densities and (b) cycle performance at 1.0 A/g for lithium ion batteries, (c) rate performance at various current densities and (d) cycle performance at 1.0 A/g for sodium ion batteries.

Figure S8. (a-b) Galvanostatic discharge-charge curves of a $TiO_2/Na_3V_2(PO_4)_3$ full-cell cycled at a current density 1.0 A/g in the voltage range of 1-3.5 V, cycle performance at 1.0 A/g of full cell.

Figure S9. HRTEM image for the charged hollow TiO_2 electrode after 1000 cycles at 1.0 A/g, which shows the crystalline and amorphous regions.

Materials	Capacity (mAh/g)	Cycle	Current density (mA/g)	Voltage (V vs. Na/Na ⁺)	Ref.
TiO ₂ /C/TiO ₂	237	100	20	1-3	3
TiO ₂ /C	137	1000	1000	1-3	4
C/TiO ₂ /C	148	1000	1675	1-3	5
Core/Shell TiO ₂	151	100	170	1-3	6
TiO ₂ /Co ₃ O ₄	180	500	300	0-3	7
TiO ₂ microboxes	187	300	170	1-3	8
TiO ₂ nanowires	173	100	170	1-3	9
Yolk-shell TiO ₂	191	40	84	1-3	10
TiO ₂ nanotube	180	100	34	1-3	11
TiO ₂	178	8 100	200	1-3	This
	138.8	1000	1000	1-3	work

Table S1. Comparison of the lithium storage behavior of various TiO_2 based anode materials.

Materials	Capacity (mAh/g)	Cycle	Current density (mA/g)	Voltage (V vs. Na/Na ⁺)	Ref.
N/S-TiO ₂	90	1000	500	0.02-2	12
Fe-TiO ₂	127.3	3000	1680	0.001-3	13
B-TiO ₂	141	400	660	0.01-2.5	14
Nb-TiO ₂	205	200	50	0.005-3	15
Ta-TiO ₂	210	300	50	0.005-3	15
S-TiO ₂	186	100	330	0.01-3	16
N/S-TiO ₂	120.9	300	1000	0.01-2.5	17
Fe-TiO ₂	164	1000	1000	0.01-2.5	18
Mo-TiO ₂	108.3	50	1680	0.01-3	19
Nb-TiO ₂	169	100	33	0-2.5	20
Sn-TiO ₂	103	700	5000	0.005-3	21
N/C-TiO ₂	260.4	300	84	0.01-3	22
TiOF ₂ -TiO ₂	151.7	2000	500	0.01-3	23
Ti ₃ C ₂ -TiO ₂	153	100	600	0.01-3	24
C-TiO ₂	125	2500	1000	0.01-3	25
N/C/TiF ₃ -TiO ₂	103	1000	1000	0.01-3	26
CNTs/C-TiO ₂	148	100	100	0.01-3	27
	213	100	200	0.01-3	Th:a
TiO ₂	177	1000	1000	0.01-3	
	115	4000	5000	0.01-3	WOLK

Table S2. Comparison of the sodium storage behavior of various TiO_2 based anode materials.

References

- C. Hou, W. Yang, X. Xie, X. Sun, J. Wang, N. Naik, D. Pan, X. Mai, Z. Guo, F. Dang and W. Du, Agaric-like anodes of porous carbon decorated with MoO₂ nanoparticles for stable ultralong cycling lifespan and high-rate lithium/sodium storage, *J. Colloid Inter. Sci.*, 2021, **596**, 396-407.
- C. Hou, J. Wang, W. Zhang, J. Li, R. Zhang, J. Zhou, Y. Fan, D. Li, F. Dang, J. Liu, Y. Li, K. Liang and B. Kong, Interfacial Superassembly of Grape-Like MnO–Ni@C Frameworks for Superior Lithium Storage, ACS Appl. Mater. Interfaces, 2020, 12, 13770-13780.
- W. Li, F. Wang, Y. Liu, J. Wang, J. Yang, L. Zhang, A. A. Elzatahry, D. Al-Dahyan, Y. Xia and D. Zhao, General Strategy to Synthesize Uniform Mesoporous TiO₂/Graphene/Mesoporous TiO₂ Sandwich-Like Nanosheets for Highly Reversible Lithium Storage, *Nano Lett.*, 2015, 15, 2186-2193.
- H. Liu, W. Li, D. Shen, D. Zhao and G. Wang, Graphitic Carbon Conformal Coating of Mesoporous TiO₂ Hollow Spheres for High-Performance Lithium Ion Battery Anodes, J. Am. Chem. Soc., 2015, 137, 13161-13166.
- Y. Zhang, N. Zhang, J. Chen, T. Zhang, W. Ge, W. Zhang, G. Xie, L. Zhang and Y. He, Preparation and lithium storage properties of C@TiO₂/3D carbon hollow sphere skeleton composites, *J. Alloys Compd.*, 2020, 815, 152511.
- Y. Cai, H.-E. Wang, X. Zhao, F. Huang, C. Wang, Z. Deng, Y. Li, G. Cao and B.-L. Su, Walnut-like Porous Core/Shell TiO₂ with Hybridized Phases Enabling Fast and Stable Lithium Storage, ACS Appl. Mater. Interfaces, 2017, 9, 10652-10663.
- D. Zhao, Q. Hao and C. Xu, Nanoporous TiO₂/Co₃O₄ Composite as an Anode Material for Lithium-Ion Batteries, *Electrochim. Acta*, 2016, 211, 83-91.
- X. Gao, G. Li, Y. Xu, Z. Hong, C. Liang and Z. Lin, TiO₂ Microboxes with Controlled Internal Porosity for High-Performance Lithium Storage, *Angew. Chem, Int. Ed.*, 2015, 54, 14331-14335.
- B. Han, S.-J. Kim, B.-M. Hwang, S.-B. Kim and K.-W. Park, Single-crystalline rutile TiO₂ nanowires for improved lithium ion intercalation properties, *J. Power Sources*, 2013, 222, 225-229.
- X. Wang, Y. Wang, L. Yang, K. Wang, X. Lou and B. Cai, Template-free synthesis of homogeneous yolk–shell TiO₂ hierarchical microspheres for high performance lithium ion batteries, *J. Power Sources*, 2014, 262, 72-78.
- H. Han, T. Song, E.-K. Lee, A. Devadoss, Y. Jeon, J. Ha, Y.-C. Chung, Y.-M. Choi, Y.-G. Jung and U. Paik, Dominant Factors Governing the Rate Capability of a TiO₂ Nanotube Anode for High Power Lithium Ion Batteries, *ACS Nano*, 2012, 6, 8308-8315.
- W. Song, H. Zhao, L. Wang, S. Liu and Z. Li, Co-doping Nitrogen/Sulfur through a Solid-State Reaction to Enhance the Electrochemical Performance of Anatase TiO₂ Nanoparticles as a Sodium-Ion Battery Anode, *ChemElectroChem*, 2018, 5, 316-321.
- H. He, D. Sun, Q. Zhang, F. Fu, Y. Tang, J. Guo, M. Shao and H. Wang, Iron-Doped Cauliflower-Like Rutile TiO₂ with Superior Sodium Storage Properties, *ACS Appl. Mater. Interfaces*, 2017, 9, 6093-6103.

- B. Wang, F. Zhao, G. Du, S. Porter, Y. Liu, P. Zhang, Z. Cheng, H. K. Liu and Z. Huang, Boron-Doped Anatase TiO₂ as a High-Performance Anode Material for Sodium-Ion Batteries, *ACS Appl. Mater. Interfaces*, 2016, 8, 16009-16015.
- H. Usui, Y. Domi, K. Takama, Y. Tanaka and H. Sakaguchi, Tantalum-Doped Titanium Oxide with Rutile Structure as a Novel Anode Material for Sodium-Ion Battery, ACS Appl. Energy Mater., 2019, 2, 3056-3060.
- W. Zhang, N. Luo, S. Huang, N.-L. Wu and M. Wei, Sulfur-Doped Anatase TiO₂ as an Anode for High-Performance Sodium-Ion Batteries, *ACS Appl. Energy Mater.*, 2019, 2, 3791-3797.
- F. Li, W. Liu, Y. Lai, F. Qin, L. Zou, K. Zhang and J. Li, Nitrogen and sulfur co-doped hollow carbon nanofibers decorated with sulfur doped anatase TiO₂ with superior sodium and lithium storage properties, *J. Alloys Compd.*, 2017, 695, 1743-1752.
- Y. Lai, W. Liu, J. Li, K. Zhang, F. Qin, M. Wang and J. Fang, High performance sodium storage of Fe-doped mesoporous anatase TiO₂/amorphous carbon composite, *J. Alloys Compd.*, 2016, 666, 254-261.
- H. Liao, L. Xie, Y. Zhang, X. Qiu, S. Li, Z. Huang, H. Hou and X. Ji, Mo-doped Gray Anatase TiO₂ : Lattice Expansion for Enhanced Sodium Storage, *Electrochim. Acta*, 2016, 219, 227-234.
- F. Zhao, B. Wang, Y. Tang, H. Ge, Z. Huang and H. K. Liu, Niobium doped anatase TiO₂ as an effective anode material for sodium-ion batteries, *J. Mater. Chem. A*, 2015, 3, 22969-22974.
- D. Yan, C. Yu, Y. Bai, W. Zhang, T. Chen, B. Hu, Z. Sun and L. Pan, Sn-doped TiO₂ nanotubes as superior anode materials for sodium ion batteries, *Chem Commun* (*Camb*), 2015, **51**, 8261-8264.
- B. Liu, J. Wang, J. Li, K. Fan, D. Zhao, G. Liu, C. Yang, H. Tong and D. Qian, N-doped carbon coated TiO₂ hollow spheres as ultralong-cycle-life Na-ion battery anodes, *J. Phys. Chem. Solids*, 2019, **134**, 214-224.
- S. Guan, Q. Fan, Z. Shen, Y. Zhao, Y. Sun and Z. Shi, Heterojunction TiO₂@TiOF₂ nanosheets as superior anode materials for sodium-ion batteries, *J. Mater. Chem. A*, 2021, 9, 5720-5729.
- P. Wang, X. Lu, Y. Boyjoo, X. Wei, Y. Zhang, D. Guo, S. Sun and J. Liu, Pillar-free TiO₂/Ti₃C₂ composite with expanded interlayer spacing for high-capacity sodium ion batteries, *J. Power Sources*, 2020, 451, 227756.
- 25. Y. Wang, N. Li, C. Hou, B. He, J. Li, F. Dang, J. Wang and Y. Fan, Nanowires embedded porous TiO₂@C nanocomposite anodes for enhanced stable lithium and sodium ion battery performance, *Ceram. Int.*, 2020, **46**, 9119-9128.
- H. Xu, W. Wang, G. Yu, L. Qin, Y. Jiang, L. Ren and J. Chen, Nitrogen-Doped Carbon-Coated TiO₂/TiF₃ Heterostructure Nanoboxes with Enhanced Lithium and Sodium Storage Performance, ACS Appl. Energy Mater., 2020, 3, 4738-4745.
- J. Chen, E. Wang, J. Mu, B. Ai, T. Zhang, W. Ge and L. Zhang, CNTs-C@TiO₂ composites with 3D networks as anode material for lithium/sodium ion batteries, *J. Mater. Sci.*, 2019, 54, 592-604.