Supplementary Information

Deeply Reduced Empty Keggin Clusters $[Mo^{IV}xM^{VI}_{12-x}O_{40-x}py_x]$ (x = 3, 6; M = Mo, W; py = pyridine): Synthesis, Structures and Lewis Field Catalysis

Cuiming Ren,^{ab} Zhihao Lu,^{bc} Benlong Luo,^b Xiaofeng Yi,^b Lifang Lin ^{bc} and Li Xu ^{b*}

^a School of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, China

^b State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou, Fujian 350002, China

° University of Chinese Academy of Sciences, Beijing 100049, China

* xli@fjirsm.ac.cn

1. Experimental Section

1.1 Methods and Materials

All chemicals were obtained from commercial sources and used without further purification. The elemental analysis (C, H and N) were performed using a vario MICRO elemental analyzer. ICP-OES (inductively coupled plasma-optical emission spectroscopy) analysis (W, Mo) were carried on Ultima 2. IR spectra were recorded with a Magna 750 FTIR spectrometer photometer as KBr pellets in the 4000~400 cm⁻¹ region. UV-vis spectra were measured on a Horiba Labram HR800 Evolution spectrometer. Powder X-ray diffraction was recorded on a Rigaku Ultima-IV diffractometer. The X-ray photoelectron spectroscopy (XPS) measurements were carried out on a ESCALAB 250Xi spectrometer equipped with an Al Ka X-ray source. The intensity data were collected on a Bruker D8-venture (**2**, **3**), Mercury 70 CCD (**1**) or Saturn 724+ (**4**) diffractometer with graphite-monochromated MoKa radiation (λ = 0.71073 Å). All absorption corrections were performed using multiscan. The structures were solved by direct methods and refined by full-matrix least-squares on F² with the SHELXTL-2016 program package.

1.2 DFT calculations

DFT calculations were performed using the GAUSSIAN 16 program package ⁴² and crystal structure parameters. DFT calculations were carried out using the (U)B3LYP functional, that is, Beck's hybrid three-parameter exchange functional ⁴³ with the Lee-Yang-Parr correlation function.⁴⁴ In these calculations, the solvent effects were taken into account by the Polarizable Continuum Model (PCM).^{45,46} The natural atomic orbital (NAO) analysis were calculated by the NBO 3.1 module embedded in Gaussian 16 program. The analysis of frontier molecular orbitals and spin densities were performed by Multiwfn,⁴⁷ which is a multifunctional wavefunction analysis program.

1.3 Catalytic hydrogenation tests

The hydrogenation reduction of nitroarenes to anilines with hydrazine hydrate in the presence of $\{Mo^{IV_6}W_6\}$ -2, $\{Mo^{IV_6}W_6Na\}$ -3 and $\{Mo^{IV_6}Mo^{VI}W_5\}$ -4 were investigated. General procedure for the reduction of nitroarenes: 2 (8.4 mg, 3 mol %, 0.0029 mmol), 3 (8.5 mg, 3 mol %, 0.0029 mmol) and 4 (17.1 mg, 3 mol %, 0.0029 mmol) were respectively added into a 25 mL round bottomed flask containing a mixture of nitroarenes (10 µL, 0.097 mmol), ethanol (2 mL) with magnetic stirring. Then, N₂H₄·H₂O (85%) (20 µL, 0.3 mmol) were added into the reactors and heated to reflux with stirring at 80 °C for 2 hours. The reactions were complete (incomplete or messy) detected by TLC (*n*-hexane/ethyl acetate = 5:1). The samples were obtained by centrifugation and filtration and analyzed by Shimadzu GC-2014C. The reduction of nitroarenes to anilines in this catalytic system based on [Mo^{IV}₆Mo^{VI}₇O₃₂(OH)₄py₆]²⁻ has been conducted for performance comparisons and mechanism study.

2. Tables

O3 1.168

O10 2.081 017 1.295 O4 2.097

011 2.277

018 2.285

O5 2.204

012 2.14

019 1.972

Table	S1	BVS results for	or 1					
Mo14.55	1	Mo2 4.471	Mo3 4.487	Mo4 6.214	W4 6.385	Mo5 6.0	078 W5	6.245
Mo6 6.03	31	W6 6.196	Mo7 6.037	W7 6.203	Mo8 6.284	W8 6.45	56 Mo9	5.863
W9 6.023	3	W10 6.523	W11 6.184	W12 6.213	O1 2.105	O2 2.16	7 O3 1	.428
O4 1.893		O5 2.04	O6 2.404	O7 2.044	O8 1.266	O9 1.85	2 010	2.081
O11 1.68	9	O12 2.089	O13 1.492	O14 1.975	O15 1.894	O16 2.0	52 O17	2.175
O18 2.13	4	O19 1.895	O20 1.677	O21 1.832	O22 2.088	O23 1.6	99 O24	1.927
O25 2.21	8	O26 1.956	O27 2.269	O28 2.185	O29 2.071	O30 1.9	69 O31	1.867
O32 1.67	2	O33 1.672	O34 1.805	O35 1.807	O36 1.787	O37 1.6	31	
Table	S2	BVS results for	or 2					
Mo1 4.24	46	W2 5.837	W3 5.866	W4 6	5.082	W5 5.893	W6 6.18	4
W1 6.219	9	Mo2 4.274	Mo3 4.197	Mo4	4.188	Mo5 4.347	Mo6 4.2	71
O1 1.963	;	O2 1.186	O3 2.207	O4 1	.999	O5 2.133	O6 2.043	3
O7 1.966	5	O8 1.586	O9 2.022	O10	1.38	O11 1.949	012 2.13	36
O13 1.78	1	014 1.223	015 1.923	O16	1.848	O17 1.18	O18 2.09	91
O19 2.07	,	O20 1.655	O21 1.887	022	1.929	O23 2.084	O24 2.02	26
O25 1.27	2	O26 1.998	O27 1.752	O28	1.62	O29 1.901	O30 1.32	28
031 2.14	8	O32 2.056	033 2.104	O34	2.073			
Table	S 3	BVS results for	or 3					
W2 6.03		Mo2 4.356	Mo3 4.275	W1 6	5.023	Mo1 4.231	W3 6.03	7
W4 5.995	5	Na 1.93	O22 0.457	023	0.31	O24 0.432	O1 1.02	3
O2 1.104	ļ	O3 2.124	O4 2.129	O5 2	.032	O6 2.073	07 1.269	9
O8 1.904	ļ	O9 1.209	O10 1.818	O11	1.883	O12 1.272	O13 1.88	87
O14 1.83		O15 1.891	O16 1.963	017	2.168	O18 1.617	O19 1.69	Ð
O20 2.04	8	O21 1.858						
Table	S4	BVS results for	or 4					
7	Mo	01 4.227	Mo2 4.359	Mo3 4.357	Mo4 4.2	14 M	o5 4.349	Mo6 4.4
939	W7	6.102	Mo8 5.851	W8 6.011	Mo9 5.9	85 W	9 6.149	Mo10 5
03	Мо	011 5.921	W11 6.083	Mo12 5.912	W12 6.0	74 O	1 2.469	02 1.13

C	2
С	2

O7 2.106

014 2.156

O21 2.041

O8 2.092

015 1.183

022 2.088

O9 2.178

016 1.947

023 1.671

O6 1.933

013 2.233

O20 1.481

O24 1.999	O251.975	O26 2.04	027 1.793	O28 2.13	O29 2.108	O30 1.782
O31 1.295	O32 1.643	O33 1.681	O34 2.1			

Table S5	Bonding energies	of Mo 3d from	the literatures	⁴⁸⁻⁵³ and th	ne binding	energies	of peaks	used
to assign sp	pecies from the pre	sent measurem	ents of 2 , 4 (C1	s calibrate	d to 284.5	eV for co	ontrast).	

Oxidation state	Mo 3d5/2	Mo 3d3/2
Mo(IV)O(OH) ₂	230. 2 eV	233.4 eV
Mo(VI)-Na ₂ MoO ₄ ·2H ₂ O	231.9-232.3 eV	235-235.4
Mo(IV) -2	229.90 eV	233.13 eV
Mo(IV) -4	229.98 eV	233.14 eV
Mo(VI) -4	231.89 eV	234.98 eV
Oxidation state	W4f7/2	W4f5/2
W(VI)-Na ₂ WO ₄	35.3 eV	37.4 eV
W(VI)-2	34.67 eV	36.79 eV
W(VI)-4	34.61 eV	36.75 eV

Table S6 St	tructural refinement	and crystallographic	parameters of 1, 2.	3 and 4
-------------	----------------------	----------------------	---------------------	-----------------------

Table 50	Structural refinement and	erystanographie paran	leters of 1, 2, 5 and 4	
Empirical formula	$C_{25}H_{41}N_5Mo_4W_8O_{41}\\$	$C_{34}H_{65}N_8Mo_6W_6O_{40.5}$	$C_{34}H_{65}N_8Mo_6W_6O_{41}Na$	$C_{90}H_{114}N_{18}Mo_{14}W_{10}O_{76}Zn \\$
Formula weight	2922.12	2912.68	2943.67	5911.02
Temperature	293(2) K	200(2) K	100(2) K	153(2) K
Wavelength	0.71073 Å	0.71073 Å	0.71073 Å	0.71073 Å
Crystal system	Monoclinic	Monoclinic	Orthorhombic	Triclinic
Space group	P21/n	P21/n	Cmca	Pī
	<i>a</i> = 13.583(8) Å	<i>a</i> = 15.7129(63) Å	<i>a</i> = 23.1566(13) Å	<i>a</i> = 13.645(3) Å
	<i>b</i> = 25.864(14) Å	<i>b</i> = 25.086(2) Å	<i>b</i> = 21.3965(13) Å	<i>b</i> = 15.216(4) Å
TT '/ 11 1' '	c = 20.044(11) Å	<i>c</i> = 16.0211(65) Å	<i>c</i> = 25.0173(13) Å	c = 21.782(5) Å
Unit cell dimensions	$\alpha = 90^{\circ}$	$\alpha = 90^{\circ}$	$\alpha = 90^{\circ}$	$\alpha = 98.179(2)^{\circ}$
	$\beta = 96.074(12)^{\circ}$	$\beta = 94.822(4)^{\circ}$	<mark>β</mark> =90°	$\beta = 103.9550(10)^{\circ}$
	$\gamma = 90^{\circ}$	$\gamma = 90^{\circ}$	$\gamma = 90^{\circ}$	$\gamma = 110.613(2)^{\circ}$
Volume	7002(7) Å ³	6292.8(9) Å ³	12395.3(12) Å ³	3977.4(16) Å ³
Z	4	4	8	1
Density (calculated)	2.764 mg/m ³	3.074 mg/m ³	3.097 mg/m ³	2.468 mg/m ³
F(000)	5256	5380	10624	2746
Crystal size (mm)	0.08×0.03×0.02	0.10×0.10×0.10	0.08×0.03×0.03	0.08×0.03×0.02
θ range	2.038 to 27.587°	2.38 to 27.56°	2.397 to 27.496°.	2.077 to 27.473°
Index ranges	-17 17,-33 33, -22 24	-20 18, -32 32, -20 20	-30 30, -27 25, -32 31	-17 17, -19 19, -28 28
Independent reflections	14951[R(int) = 0.0849]	13808 [R(int) = 0.0730]	7287 [R(int) = 0.0587]	18101 [R(int) = 0.0648]
Reflections $[I \ge 2\sigma(I)]$	10577	10849	6192	14382
Completeness	94.0 %	99.9 %	99.6 %	99.7 %
Restraints/parameters	0 / 624	0 / 790	2 / 433	0 / 815
S on F ²	1.122	1.450	1.50	1.074
Final R indices [I>2o(I)]	R_1 =0.068, w R_2 =0.176	R1=0.063, wR2=0.184	R1=0.039, wR2=0.075	R ₁ =0.056, wR ₂ =0.137
Final R indices [all data]	R1=0.090, wR2=0.190	R1=0.078, wR2=0.201	R ₁ =0.050, wR ₂ =0.078	R ₁ =0.073, wR ₂ =0.147

3. Figures

(a) (b) (c) Fig. S1 (a) UV-vis spectrum of 4 in DMF; (b) Solid-state UV-vis spectrum of 4; (c) Solid-state

UV-vis spectrum of **2**.

Fig. S2 XPS spectra of 4.

Fig. S3 XPS spectra of 2.

Fig. S4 (a) Structure of 1; (b) Crystal packing structure of 1.

Fig. S5 (a) Structure of **2**; (b) Crystal packing structure of **2**.

Fig. S6 (a) Structure of 3; (b) Crystal packing structure of 3.

Fig. S7 (a) Structure of 4; (b) Crystal packing structure of 4.

Fig. S8 Powder X-ray diffraction spectrum of 2.

Fig. S9 IR spectra of 2 (a), 3 (b) and 4 (c).

Fig. S10 Structures of the simulated γ -Keggin cluster $[H_4Mo_6W_6O_{40}]^{4-}$ (a), and the discrete $[Mo^{IV}_3O_4(C_2O_4)_3(Mepy)_3]^{2-}$ (b) for DFT calculations (Mo^{IV}, pink; Mo^{VI}, blue; W, dark green; O, red).

LUMO+2 (-2.26 eV)

LUMO (-2.70 eV)

HOMO-1 (-5.87 eV)

HOMO-2 (-5.95 eV)

HOMO-6 (-6.77 eV)

HOMO-3 (-6.05 eV)

HOMO-7 (-6.98 eV)

HOMO-4 (-6.33 eV)

HOMO-8 (-7.12 eV)

HOMO-5 (-6.58 eV)

Fig. S12 MO_S of **2**

Fig. S13 MO_S of **3**

Fig. S14 MOs of 4

References

- Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
- 43. A. D. Becke, Density Functional Theochemistry. III The Role of Exact Exchange, J. Chem. Phys., 1993, 98, 5648-5652.
- 44. C. Lee, W. Yang and R. G. Parr, Phys. Rev. B: Condens. Matter Mater. Phys., 1988, 37, 785-789.
- 45. M. Cossi, G. Scalmani, N. Rega and V. Barone, New developments in the polarizable continuum model for quantum mechanical and classical calculations on molecules in solution, *J. Chem. Phys.*, 2002, **117**, 43-54.
- 46. V. Barone, M. Cossi and J. Tomasi, A new definition of cavities for the computation of solvation free energies by the polarizable continuum model, *J. Chem. Phys.*, 1997, **107**, 3210-3221.
- 47. T. Lu and F. W. Chen, Quantitative analysis of molecular surface based on improved Marching Tetrahedra algorithm, *J. Mol. Graph. Model.*, 2012, **38**, 314-323.

- 48. B. Brox and I. Olefjord, Quantitative analysis of molecular surface based on improved Marching Tetrahedra algorithm, *Surf. Interface Anal.* 1988, **13**, 3-6.
- 49. C. R. Clayton and Y. C. Lu, Electrochemical and XPS evidence of the aqueous formation of Mo₂O₅, *Surf. Interface Anal.*, 1989, **14**, 66-70.
- 50. Y. C. Lu and C.R. Clayton, An XPS study of the passive and transpassive behavior of molybdenum in deaerated 0.1 M HCl, *Corros. Sci.*, 1989, **29**, 927-937.
- 51. I. A. Okonkwo, J. Doff, A. Baron-Wiecheć, G. Jones, E. V. Koroleva, P. Skeldon and G. E. Thompson, Oxidation states of molybdenum in oxide films formed in sulphuric acid and sodium hydroxide, *Thin Solid Films*, 2012, **520**, 6318-6327.
- 52. C. Shi, A.M. Zhu, X. F. Yang and C.T. Au, NO reduction with hydrogen over cobalt molybdenum nitride and molybdenum nitride: A comparison study, *Catal. Lett.* 2004, **97**, 9-16.
- 53. F. Werfel and E. Minni, Photoemission study of the electronic structure of Mo and Mo oxides, *J. Phys. C: Solid State Phys.* 1983, **16**, 6094.