Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2021

Supporting Information for

High spin polarized Fe_2 cluster combined with vicinal nonmetallic sites for catalytic ammonia synthesis by a theoretical perspective

Hongdan Zhu, ^a Jolyon Aarons, ^b Qian Peng, ^{a, *}

a State Key Laboratory and Institute of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China. b Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China. Dedicated to the 100th anniversary of Chemistry at Nankai University. * Email: qpeng@nankai.edu.cn.

Table of Contents

1.	Free energy calculation	S3
2.	Microkinetic analysis	S4
3.	Results and Discussion	S6
3.1	The vicinal nonmetallic sites-promoted Hydrogenation Mechanism	S6
	Optimized configurations for N_2 adsorption on $Fe_2/mpg-C_3N_4$ (Fig. S1 and Table S2)	S6
	AIMD simulations for N_2 on $Fe_2/mpg-C_3N_4$ (Fig. S2)	S7
	Optimized structures for the adsorption of *N_2 on C_3N_4 and N-vacancy of C_3N_4 (Fig. S3)	S8
	N_2 Direct dissociation on Fe ₂ /mpg-C ₃ N ₄ (Fig. S4)	S8
	Optimized adsorption configurations and Gibbs free energies for N_2 and H_2 on Fe ₂ cluster (Fig. S5)	S 9
	Optimized configurations for N ₂ and H ₂ co-adsorption on Fe ₂ /mpg-C ₃ N ₄ (Fig. S6)	S9
	Hydrogen transfer in the N sites on $Fe_2/mpg-C_3N_4$ (Fig. S7)	S10
	Nitrogen hydrogenation to generate *NNH on $Fe_2/mpg-C_3N_4$ (Fig. S8)	S10
	The Schematic depiction of association mechanisms on $Fe_2/mpg-C_3N_4$ (Fig. S9)	S11
	Preferred reaction pathway on $Fe_2/mpg-C_3N_4$ (Fig. S10)	S11
	Energy profiles and structures of association mechanisms on $Fe_2/mpg-C_3N_4$ (Fig. S11-14 and Table S3)	S12-15
	Transition state energy barriers by use PBE and PBE-D3 functional (Table S4)	S16
	N-H bond formation energy barriers in all hydrogenation mechanisms (Fig. S15)	S16
	N_2 adsorption structures and TDTS on energy-degenerate Fe $_2$ /mpg-C $_3N_4$ configurations (Fig. S16)	S17
3.2	The Mechanisms of Nitrogen Reduction on various Iron clusters	S18
	Energy profile and structures of association mechanisms on $Fe_n/mpg-C_3N_4$ (n=3,4) (Fig. S17-18)	S18-19
3.3	Electronic structure analysis	S20
	MOs analysis of the Fe_2N_2 Simplified model and Partial MOs of Fe_2 /mpg- C_3N_4 (Fig. S19-20)	S20
	Projected electronic density of states (PDOS) of NHxNHy species (Fig. S21)	S21
3.4	The efficient catalyst by B doping mpg-C $_3N_4$	S22
	Gibbs free energy diagrams on the $Fe_2/mpg-C_3N_4$ (Fig. S22)	S22
	Optimized adsorption configurations on $Fe_2/O/mpg-C_3N_4$ and $Fe_2/N/mpg-C_3N_4$, respectively (Fig. S23)	S23
	Fe_2 dimer configurations on the B doped mpg- C_3N_4 and the transformation of the two configurations (Fig. S24)	S23
	Optimized adsorption configurations on B doped $Fe_2/mpg-C_3N_4$ (Fig. S25)	S24
	Hydrogen transfer processes in the C site on Fe $_2$ /B/mpg-C $_3N_4$ (B) (Fig. S26)	S24
	Energy diagrams of association mechanisms on Fe $_2$ /B/mpg-C $_3N_4$ (Fig. S27)	S25
	Gibbs free energy diagram on the $Fe_2/B/mpg-C_3N_4$ (Fig. S28)	S26
Re	ferences	S26

1. Free energy calculation

For adsorbed molecules, their translational and rotational freedoms are restricted. Thus, the contribution of translation and rotation to entropy and enthalpy will be significantly reduced. Generally, we consider that this part of the contribution is transformed into vibrational energy and all 3N vibrations of adsorbed molecules are used to calculate the correction of thermodynamic quantities. Therefore, when calculating the Gibbs free energy of the adsorbed molecules, the thermodynamic contribution generated by the vibration freedom will be mainly considered.

Taking the bottom of the potential energy well as the zero point, the vibration partition function under the resonance approximation can be expressed as:

$$q_{vir} = \prod_{i} \frac{e^{-hv_{i}/2kT}}{1 - e^{-hv_{i}/kT}}$$
(eq-S1)

Where q_{vir} , v_i , h and k represent vibration partition function, vibration frequency, Planck constant and Boltzmann constant, respectively.

So, the corrections of internal energy $({}^{U}_{vir}(T))$ and entropy $({}^{S}_{vir}(T))$ at a certain temperature can obtain by equation eq-S2 and eq-S3:

$$U_{vir}(T) = R \sum_{i} \left(\frac{hv_{i}}{k}\right) \left(\frac{1}{2} + \frac{e^{-hv_{i}/kT}}{1 - e^{-hv_{i}/kT}}\right)$$
(eq-S2)

$$S_{vir}(T) = R \sum_{i} \left\{ \frac{hv_i}{k} \frac{e^{-hv_i/kT}}{1 - e^{-hv_i/kT}} - \ln\left[1 - e^{-hv_i/kT}\right] \right\}$$
(eq-S3)

And at 0 K, the zero-point vibrational energy (ZPE) of adsorbed molecules is:

$$ZPE = \frac{1}{2} \sum_{i} hv_i$$
 (eq-S4)

After vibrational frequency analysis, we can directly obtain the thermodynamic contribution and to calculate the corresponding Gibbs free energies at standard pressure and a certain temperature through VASPKIT code, a post-processing tool for VASP code ¹.

Different from adsorbed molecules, for gas molecules, the calculation of Gibbs free energy needs to consider the contributions of translational energy, rotational energy and vibrational energy at the same time, which increases the complexity of the calculation.

Under 0 K, there is:

$$U(0) = \varepsilon_{ele} + ZPE \tag{eq-S5}$$

 $G(0) = H(0) = U(0) = \varepsilon_{ele} + ZPE$ (eq-S6)

Here, We can obtain the enthalpy and entropy at a certain temperature and standard pressure in the NIST-JANAF thermodynamics table. So, the Gibbs free energy at standard pressure can be calculated as:

$$G(T,p^{0}) = G(0,p^{0}) + \Delta G_{0 \to T} = \varepsilon_{ele} + ZPE + (\Delta H_{0 \to T} - T\Delta S_{0 \to T})$$
(eq-S7)

According to the the ideal gas equation of state, the Gibbs free energy at certain temperature and pressure can be obtained as:

$$G(T,p) = G(T,p^0) + RT \ln p/p^0 \qquad (eq-S8)$$

The zero-point vibrational energy and entropy corrections of gas molecules and adsorbted intermediate species involved in N₂-to-NH₃ conversion at standard condition (T = 298.15 K and p^0 = 1 bar) are listed in Table S1.

Table S1. Free energy corrections for gas molecules and adsorbted intermediate species.

Species	<i>ZPE</i> (eV)	<i>TS</i> (eV)	ZPE-TS (eV)
N2	0.15	0.57	-0.42
H ₂	0.27	0.39	-0.12
NH ₃	0.91	0.58	0.33
N ₂ *	0.20	0.09	0.11
N ₂ *+4H*	1.49	0.11	1.38
N_{2}^{*} (B/g-C ₃ N ₄)	0.20	0.09	0.11
N ₂ *+4H* (B/g-C ₃ N ₄)	1.43	0.11	1.32

2. Microkinetic analysis

Microkinetic analysis of $Fe_2/mpg-C_3N_4$ and $Fe_2/B/mpg-C_3N_4$ by the Energetic Span model, proposed by Kozuch *et al*², are conducted to further probe the reaction rate for the influence of B doping and the catalytic performance. This theoretical model proposes that aside from the rate-limiting step, the steps before and after it also have impacts on the *TOF*, and thus the apparent activation energy rather than the activation energy of a single rate-limiting step can determine the whole reaction activity. In this model, the *TOF*-determining transition state (TDTS) and *TOF*-determining intermediate (TDI) are used to identify the apparent activation energy (δG_a) following Equation (eq-S9):

$$\delta G_{a} = \begin{cases} T_{TDTS} - I_{TDI} & \text{if TDTS appears after TDI} \\ T_{TDTS} - I_{TDI} + \Delta G_{r} & \text{if TDTS appears before TDI} \end{cases}$$
(eq-S9)

Where, the TDTS and the TDI are the TS and the intermediate that maximize the energetic span within the cyclic constraints, and thereby gauge the kinetics of the cycle.

The TOF can be calculated following Equation (eq-S10)

$$TOF = \frac{k_B T}{h} e^{-\delta G_{a/k_B} T}$$
(eq-S10)

Because of the condition that the TDI and TDTS must be the ones that maximize the energetic span, the determining states may be different from the extreme state of the energy graph. According to the reaction free energy diagrams from $Fe_2/mpg-C_3N_4$ and $Fe_2/B/mpg-C_3N_4$, (Fig.S18 and Fig.S24):

Thus, T_{TDTS} and I_{TDI} are TS(a3-a4) and a12 respectively. In order to investigate the effect of different temperatures and pressures on the reaction rate, we plot a TOF map with pressure (1-100 bar) and temperature(300-700 K) of ammonia synthesis on Fe₂/B/mpg-C₃N₄(Fig. 7b). In addition, we also considered the impact of different partial pressures on TOF (Fig. 7c). In addition, we also tried to carry out the Microkinetic modeling by using the CatMAP Software package ³ but it seems not to be applicable in our mechanism probably because multiple adsorption sites would lead the Microkinetic model much too complex to be solved.

3. Results and Discussion

3.1. The vicinal nonmetallic sites-promoted Hydrogenation Mechanism

Fig. S1. Optimized configurations for N₂ adsorption on Fe₂/mpg-C₃N₄ (Gray: C, Silver: N, Golden; Fe).

Adsorption	Adsorption	$E_{ads}/eV^{[a]}$	Magnetic	N-N bond	Bader charge
Structures	Model		Moment/µ	Length/Å	of N ₂ / e
а	μ-դ2:դ2	-1.52	4.13	1.25	-0.86
b	μ-դ2:դ1	-1.50	4.04	1.20	-0.72
С	դ1։ դ1	-1.29	4.06	1.16	-0.56

Table S2. Structural properties of N_2 adsorption configurations on $Fe_2/mpg-C_3N_4$.

[a] E_{ads} is the adsorption energy of the surface species, calculated according to eq-2.

Fig. S2. AIMD simulations for on Fe₂/mpg-C₃N₄. (a) Fluctuations of potential energy with time; (b) Spin moment change with time. (c) Radial distribution functions (RDFs) of Fe-N and N-N in N₂ adsorption constructions; (d) Root-mean-square deviation (RMSD) of *N1 and *N₂ in N₂ (Structure a is mainly distributed before 7800($\times 2fs$), after that, there are mainly structure b and a small amount of structure c. Structure a appeared again after 11300($\times 2fs$).).

Fig. S3. Optimized structures for the adsorption of $*N_2$ on C_3N_4 and N-vacancy of C_3N_4 .

We have considered the adsorption of nitrogen on C_3N_4 . As seen in Fig. S3, calculated results indicating that the C_3N_4 cannot effectively stabilize and activate N_2 (Fig. s3a-b). In comparison, N-vacancy (Fig. S3c) can adsorb and activate N_2 , which was is confirmed by recent literature⁴. However, the adsorption energy on the Fe₂ site (Fig. S3d) is 0.51 eV more stable than that on N-vacancy. Therefore, Fe₂ with high spin polarization is more favorable for activating nitrogen in our model.

Fig. S4. Optimized configurations for N₂ dissociation on Fe₂/mpg-C₃N₄ (Pink: H, Gray: C, Silver: N, Golden: Fe).

Fig. S5. Optimized adsorption configurations and Gibbs free energies for N_2 and H_2 on Fe₂ cluster. (Pink: H, Gray: C, Silver: N, Golden: Fe).

When considering the adsorption of reactants, we consider the adsorption of H_2 on Fe_2 cluster. As shown in Fig.S5, calculated results show that Nitrogen adsorption is more stable than hydrogen adsorption, especially the Gibbs free energy of nitrogen is 0.24eV more stable than hydrogen.

Fig. S6. Optimized configurations for N_2 and H_2 adsorption simultaneously on $Fe_2/mpg-C_3N_4$ (Pink: H, Gray: C, Silver: N, Golden: Fe).

Fig. S7. Hydrogen transfer processes in the N sites on Fe₂/mpg-C₃N₄ (Pink: H, Gray: C, Silver: N, Golden: Fe).

Fig. S8. Structures of the Hydrogen transfer process on Fe₂/mpg-C₃N₄ (Pink: H, Gray: C, Silver: N, Golden: Fe).

Fig. S9. Schematic depiction of four different association mechanisms for the thermal conversion of N_2 to NH_3 on $Fe_2/mpg-C_3N_4$. (AH and DH are abbreviations for Alternative and Distal Hydrogenation, respectively. The inset structures represent the co-adsorption configuration of N_2+2H_2 and *NNH intermediate (a2 and a5 in Fig. 2)

Fig. S10. Preferred reaction pathway for the thermal conversion of N_2 to NH_3 on $Fe_2/mpg-C_3N_4$.

Fig. S11. Energy profile and structures of the surface species for the distal hydrogenation (DH1) of N_2 on Fe₂/mpg-C₃N₄ (Pink: H, Gray: C, Silver: N, Golden; Fe).

Fig. S12. Energy profile and structures of the surface species for the alternative hydrogenation (AH1) of N_2 on $Fe_2/mpg-C_3N_4$ (Pink: H, Gray: C, Silver: N, Golden; Fe).

Fig. S13. Energy profile and structures of the surface species for the alternative hydrogenation (AH2) of N_2 on $Fe_2/mpg-C_3N_4$ (Pink: H, Gray: C, Silver: N, Golden; Fe).

Fig. S14. Energy profile and structures of the surface species for the alternative hydrogenation (AH3) of N_2 on $Fe_2/mpg-C_3N_4$ (Pink: H, Gray: C, Silver: N, Golden; Fe).

NH _x NH _y Intermediates	Adsorption Structures ^[a]	N-N break Energy barriers/eV	N-N bond length/Å	Bader charge/ e
N-NH	а5	1.10	1.33	-1.18
NH-NH	b6	0.99	1.40	-1.57
N-NH ₂	a7	0.58	1.43	-1.48
NH-NH ₂	c8	0.50	1.44	-1.60

Table S3. N-N bonds and Bader charge of N_2 for $NH_xNH_y(x=0-3, y=0-3)$ intermediates on $Fe_2/mpg-C_3N_4$.

[a] Adsorption Structures come from Fig. 2.

	PBE	PBE(D3)
TS-a1-2	0.75	0.79
TS-a2-3	0.47	0.47
TS-a3-4	1.38	1.40
TS-a4-b5	0.36	0.35
TS-c6-c7	0.36	0.32
TS-c7-c8	0.50	0.49

Table S4. Transition state energy barriers (eV) of several elementary reactions by use PBE functional and empirical dispersion correction (Grimme-D3) to PBE functional.

By comparing the transition state energy barriers of several elementary reactions in the optimal reaction pathway, we found that there will be a slight difference in energy when using the empirical dispersion correction (Grimme-D3) to PBE functional, but it will not affect the results of reaction mechanism.

Fig. S15. N-H bond formation energy barriers in all hydrogenation mechanisms. (The hydrogen transferred on -N, -NH, and -NH₂ is labeled green, red and blue, respectively).

Fig. S16. Optimized N_2 adsorption structures and TOF-determining transition state on energy-degenerate $Fe_2/mpg-C_3N_4$ configurations. (Pink: H, Gray: C, Silver: N, Golden; Fe).

Indeed, we have indeed also found that there are two energy-degenerate configurations of Fe₂ on g-C₃N₄, exhibiting different spin-polarizations. However, In the thermal catalytic synthesis of ammonia, how to activate the inert nitrogen would be a key issue. Our calculation results show that high-spin polarized Fe₂ with stronger electron donating ability for $2\pi^*$ of N₂ is more beneficial to activate nitrogen based on N₂ adsorption (Fig. S16). In addition, the TOF-determining transition state (TDTS) (TS-a3-a4 in Fig. 3b of main text) on high-spin polarized Fe₂ is 0.12eV lower than that on low-spin polarized Fe₂, which would affect the reaction rate of the catalytic cycle. Thus, low-spin polarized Fe₂/mpg-C3N4 does not have a catalytic advantage in the thermal catalytic synthesis of ammonia.

3.2. Nitrogen Reduction Mechanisms on various Iron clusters

Fig. S17. Structures of the surface species and the energy profiles for the Nitrogen hydrogenation mechanisms on $Fe_3/mpg-C_3N_4$ (Pink: H, Gray: C, Silver: N, Golden; Fe).

Fig. S18. Structures of the surface species and the energy profiles for the Nitrogen hydrogenation mechanisms on $Fe_4/mpg-C_3N_4$ (Pink: H, Gray: C, Silver: N, Golden; Fe). (Note that the $Fe_4/g-C_3N_4$ in this reaction pathway is not the most stable Fe_4 cluster, and we designed this structure only to study the effect of iron coordination numbers on the reaction mechanism).

3.3. Electronic structure analysis

Fig. S19. MOs analysis of the Fe₂N₂ Simplified model with C_{2v} configuration based on SR-ZORA PBE/DZP calculations and the energy levels of Fe₂ α -orbitals are much lower than those of the β -orbitals. (The components of the orbitals marked in red are mixed, and the former has the most orbital components)

Fig. S20. Occupied partial molecular orbitals of the Nitrogen adsorption conformation on $Fe_2/mpg-C_3N_4$ based on wb97xd/def2svp calculations, the shape of orbitals is consistent with the bond orbitals between nitrogen and simplified model Fe_2 cluster (Fig. S17).

Fig. S21 (a) Projected electronic density of states (PDOS) of NH_xNH_y species and corresponding spin densities in $Fe_2/mpg-C_3N_4$; (b) Projected electronic density and spin density of *NNH in $Fe_3/mpg-C_3N_4$.

To understand the unusual hydrogenation mechanism of N₂ on the Fe₂/mpg-C₃N₄, projected density of states (PDOS) and spin densities for key intermediates were shown in Fig.S20. With continuous hydrogenation, both Fe₂ clusters and absorbed hydrogens transfer their electrons to N₂ 2 π * orbitals, which decreased the energy of the N-N anti-bond orbital and activates the N-N bond in Fig. 6a. The formed *NNH has relatively high spin polarization to make the next hydrogenation favorable, forming *NHNH via an alternate pathway. Because α -spin electrons of N₂ 2 π * orbitals keep increasing from *NN to *NHNH₂, the spin density for each intermediate is gradually eroded. After that, the following transformation would favor the dissociation of the N-N bond rather than additional hydrogenation. In contrast, the spin density of *NNH in Fe₃/g-C₃N₄ (Fig. 6b) is relatively low comparing with that in Fe₂/g-C₃N₄, and thus continuous hydrogenation was hindered.

Fig. S22. Gibbs free energy diagram for ammonia synthesis on the $Fe_2/mpg-C_3N_4$. Reaction conditions and parameters are: $H_2:N_2$ ratio = 3:1 and NH_3 conversion is fixed at 10 %.

Fig. S23. Optimized N₂ adsorption configurations and co-adsorptions of N₂ and H₂ on O / N doped Fe₂/mpg-C₃N₄ (Fe₂/O/mpg-C₃N₄ and Fe₂/N/mpg-C₃N₄), respectively (Pink: H, Gray: C, Silver: N, red: O, Golden; Fe).

Fig. S24. Atomic configurations for Fe_2 dimers on the B doped mpg-C₃N₄ and the transformation of the two configurations, including IS, TS, and FS.

As seen in Fig. S23-S25, although the other Fe₂/B/mpg-C₃N₄(B), is slightly stable in thermodynamics (ΔE =-0.18eV), it is easy to transform into the Fe₂/B/mpg-C₃N₄ in main text with kinetics barrier (E_a=0.29 eV). And the most stable adsorption energy of nitrogen for these two configurations is similar. When considering the co-adsorption of nitrogen and hydrogen, the B-N site of Fe₂/B/mpg-C₃N₄(B) configuration becomes unfavorable for the adsorption and activation of hydrogen (around 1.1 eV, see b/b'and c/c' in Fig. S24). Therefore, the Fe₂/B/mpg-C₃N₄ in main text is stable with proper Fe₂ binding for the efficient hydrogen transfer.

Fig. S25. Optimized N_2 adsorption configurations and co-adsorptions of N_2 and H_2 on B doped Fe₂/mpg-C₃N₄, (Pink: H, Gray: C, Silver: N, green: B, Golden; Fe).

Fig. S26. Most co-adsorption configuration and hydrogen transfer processes in the C site on B doped $Fe_2/mpg-C_3N_4$ ($Fe_2/B/mpg-C_3N_4(B)$), (Pink: H, Gray: C, Silver: N, green: B, Golden; Fe).

Fig. S27. Energy diagrams of four different association mechanisms for conversion of N_2 to NH_3 catalyzed by $Fe_2/B/mpg-C_3N_4$.

Fig. S28. Gibbs free energy diagram for ammonia synthesis on the $Fe_2/B/mpg-C_3N_4$. Reaction conditions and parameters are: $H_2:N_2$ ratio = 3:1 and NH_3 conversion is fixed at 10 %.

References

1 V. Wang, N. Xu, J. C. Liu, G. Tang, W. T. Geng, VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code, *Comput. Phys. Commun.* 2021, **267** 108033.

2 K. Sebastian, S. Sason, How to Conceptualize Catalytic Cycles? The Energetic Span Model, *Acc. Chem. Res.* 2011, **44** 101-110.

3 A. J. Medford, C. Shi, M. J. Hoffmann, A. C. Lausche, S. R. Fitzgibbon, T. Bligaard and J. K. Nørskov, CatMAP: A Software Package for Descriptor-Based Microkinetic Mapping of Catalytic Trends, *Catal. Lett.* 2015, **145** 794-807.

4 Z. Zhao, Y. Long, S. Luo, Y. Luo, M. Chen, J. Ma, Metal-Free C₃N₄ with plentiful nitrogen vacancy and increased

specific surface area for electrocatalytic nitrogen reduction, J. Energy Chem. 2021, 60 546-555.