Supplementary Information

Self-Templating Synthesis of Heteroatom-Doped Large-Scalable

Carbon Anodes for High-Performance Lithium-Ion Batteries

Ghulam Yasin ^{a, b, c, *}, Muhammad Arif ^d, Jiameng Ma ^a, Shumaila Ibraheem ^c, Donglin Yu ^a, Lipeng Zhang ^a, Dong Liu ^{a, *}, Liming Dai ^{e, *}

^a State Key Laboratory of Organic-Inorganic Composites, Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.

^b College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.

^c Institute for Advanced Study, Shenzhen University, Shenzhen 518060, Guangdong, China.

^d State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.

^e School of Chemical Engineering, University of New South Wales, Sydney, NSW2052, Australia.

Corresponding Authors:

yasin@mail.buct.edu.cn (G. Yasin) liudong@mail.buct.edu.cn (D. Liu) l.dai@unsw.edu.au (L. Dai)

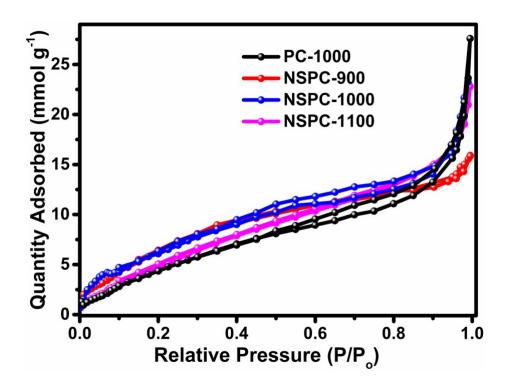
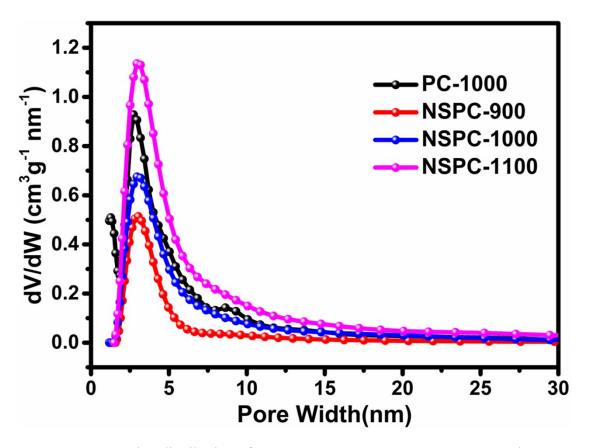



Figure S1. Nitrogen adsorption and desorption isotherms for PC-1000, NSPC-900, NSPC-1000 and NSPC-1100.

Table S1: Summary of the d-spacing of prepared samples.

Samples	NSPC-900	NSPC-1000	NSPC-1100	PC-1000
20 (degree)	24.91	24.27	24.19	25.38
d ₀₀₂ (nm)	0.357	0.367	0.369	0.351

Figure S2. Pore size distributions for PC-1000, NSPC-900, NSPC-1000 and NSPC-1100 determined by NLDFT method.

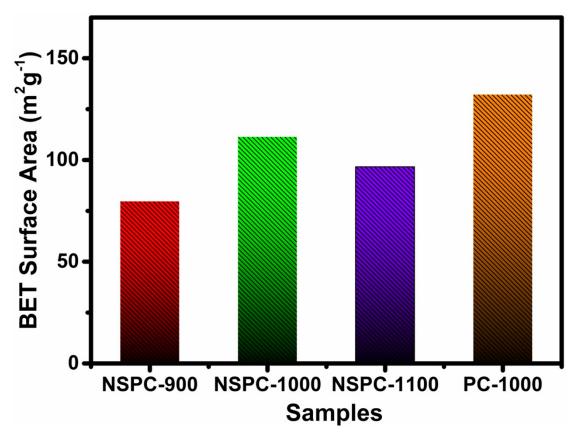


Figure S3. BET surface areas of NSPC-900, NSPC-1000, NSPC-1100 and PC-1000 samples.

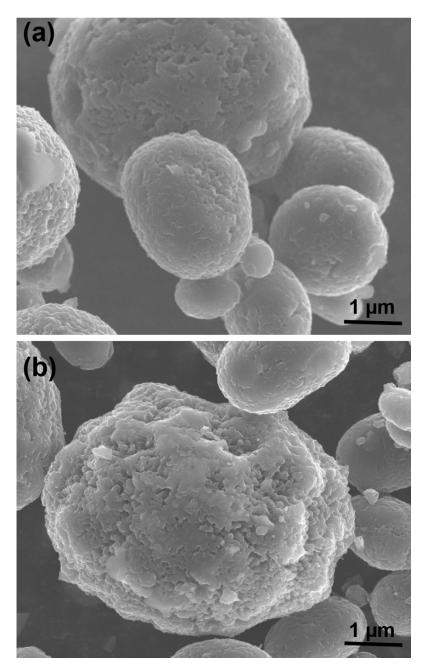


Figure S4. SEM images of (a) NSPC-900 and (b) NSPC-1100.

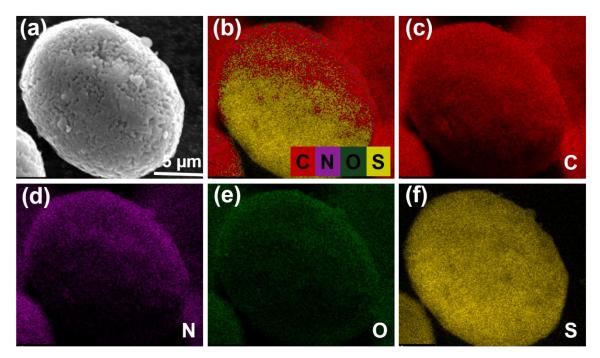


Figure S5. SEM image (a) and (b-f) SEM-EDS elemental mapping of NSPC-1000.

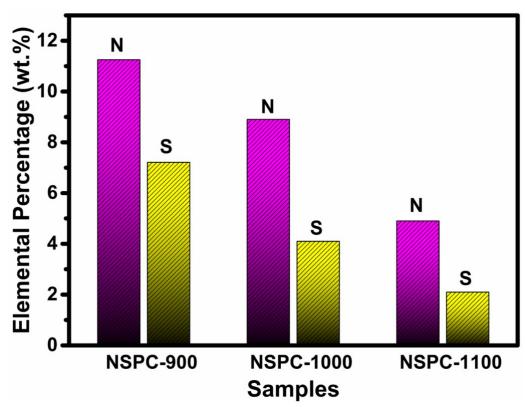
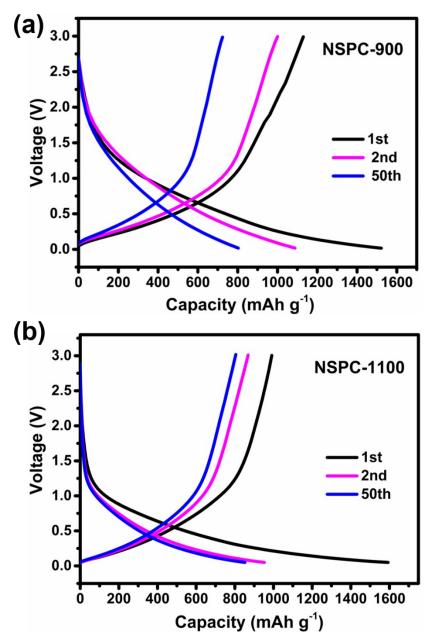
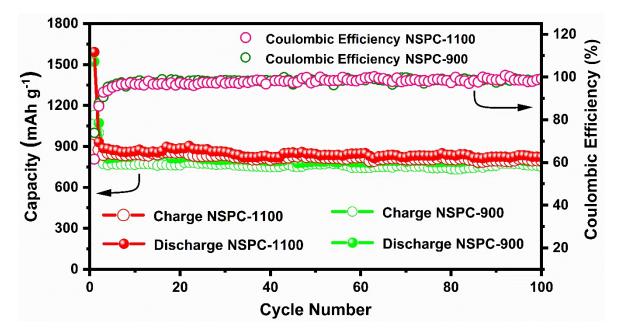




Figure S6. Elemental composition of as-prepared $NSPC_X$ samples.

Figure S7. Charge-discharge curves for (a) NSPC-900 and (b) NSPC-1100 at a current density of 0.1 A g^{-1} .

Figure S8. Cycling performance and corresponding Coulombic efficiencies of NSPC-900 and NSPC-1100 samples at 0.1 A g⁻¹.

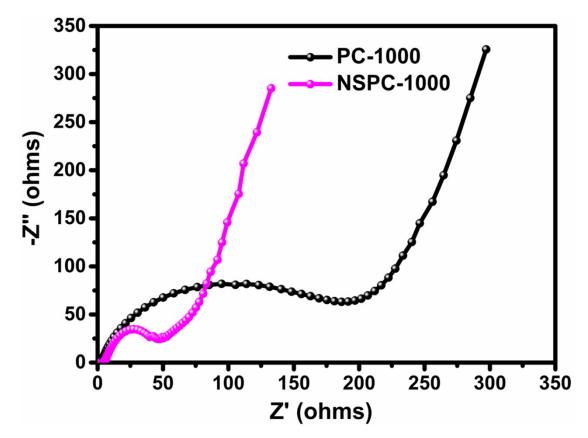


Figure S9. Electrochemical impedance spectra of PC-1000 and NSPC-1000.

Table S2:	Comparison	of	lithium	storage	performance	with	recently	reported
literatures.								

Sr. No.	Material/Morphology	Stable Capacity	Cycling Performance	Referenc e
1	NSPC-1000	935 mA h g ⁻¹ At 0.1 A g ⁻¹ after 150 cycles	695 mA h g ⁻¹ At 5 A g ⁻¹ after 1150 cycles	This Work
2	S,N-co-doped mesoporous carbon materials	675.1 mA h g ⁻¹ At 0.1 A g ⁻¹ after 150 cycles	675.1 mA h g ⁻¹ At 0.1 A g ⁻¹ after 150 cycles	[1]
3	Nitrogen and Sulfur Codoped Graphene Electrode Material	1050 mA h g ⁻¹ At 0.2 A g ⁻¹ after 500 cycles	297 mA h g ⁻¹ At 5 A g ⁻¹ after 1500 cycles	[2]
4	Nitrogen and sulfur dual- doped graphene sheets	490 mA h g ⁻¹ At 0.1 A g ⁻¹ after 500 cycles	211 mA h g ⁻¹ At 1 A g ⁻¹ after 5000 cycles	[3]
5	Hierarchical porous nitrogen, sulfur, dual- doped carbon	1215 mA h g ⁻¹ At 0.1 A g ⁻¹ after 100 cycles	362 mA h g ⁻¹ At 20 A g ⁻¹ after 100 cycles	[4]
6	nitrogen and sulfur co- doped porous carbon	768 mA h g ⁻¹ At 0.7 A g ⁻¹ after 15 cycles	504 mA h g ⁻¹ At 3.1 A g ⁻¹ after 120 cycles	[5]
7	Nitrogen and Phosphorus Codoped Porous Carbon Framework	940 mA h g ⁻¹ At 0.5 A g ⁻¹ after 20 cycles	740 mA h g ⁻¹ At 2 A g ⁻¹ after 2000 cycles	[6]
8	Nitrogen and sulfur dual- doped carbon films	832.4 mA h g ⁻¹ At 0.1 A g ⁻¹ after 42 cycles	357.2 mA h g ⁻¹ At 2 A g ⁻¹ after 2000 cycles	[7]
9	Ultrahigh level nitrogen/sulfur co-doped carbon	917 mA h g ⁻¹ At 0.1 A g ⁻¹ after 40 cycles	653 mA h g ⁻¹ At 1 A g ⁻¹ after 500 cycles	[8]
10	N and S co-doped graphene sheets	732.3 mA h g ⁻¹ At 0.5 A g ⁻¹ after 70 cycles	788.2 mA h g ⁻¹ At 0.1 A g ⁻¹ after 50 cycles	[9]
11	sulfur doped graphene- based nanosheets	740 mA h g ⁻¹ At 0.37 A g ⁻¹ after 10 cycles	290 mA h g ⁻¹ At 1.48 A g ⁻¹ after 500 cycles	[10]
12	Hierarchically porous and nitrogen, sulfur-codoped graphene-like microspheres	1180 mA h g ⁻¹ At 0.05 A g ⁻¹ after 70 cycles	725 mA h g ⁻¹ At 0.5 A g ⁻¹ after 80 cycles	[11]

References

[1] Zhuang G-l, Bai J-q, Tao X-y, Luo J-m, Wang X-d, Gao Y-f, et al. Synergistic effect of S,N-co-doped mesoporous carbon materials with high performance for oxygenreduction reaction and Li-ion batteries. Journal of Materials Chemistry A. 2015;3:20244-53.

[2] Ai W, Luo Z, Jiang J, Zhu J, Du Z, Fan Z, et al. Nitrogen and Sulfur Codoped Graphene: Multifunctional Electrode Materials for High-Performance Li-Ion Batteries and Oxygen Reduction Reaction. Advanced Materials. 2014;26:6186-92.

[3] Zhou Y, Zeng Y, Xu D, Li P, Wang H-g, Li X, et al. Nitrogen and sulfur dual-doped graphene sheets as anode materials with superior cycling stability for lithium-ion batteries. Electrochimica Acta. 2015;184:24-31.

[4] Ou J, Yang L, Zhang Z, Xi X. Honeysuckle-derived hierarchical porous nitrogen, sulfur, dual-doped carbon for ultra-high rate lithium ion battery anodes. Journal of Power Sources. 2016;333:193-202.

[5] Zhang J, Yang Z, Qiu J, Lee H-W. Design and synthesis of nitrogen and sulfur codoped porous carbon via two-dimensional interlayer confinement for a highperformance anode material for lithium-ion batteries. Journal of Materials Chemistry A. 2016;4:5802-9.

[6] Ma C, Deng C, Liao X, He Y, Ma Z, Xiong H. Nitrogen and Phosphorus Codoped Porous Carbon Framework as Anode Material for High Rate Lithium-Ion Batteries. ACS Applied Materials & Interfaces. 2018;10:36969-75.

[7] Ruan J, Yuan T, Pang Y, Luo S, Peng C, Yang J, et al. Nitrogen and sulfur dualdoped carbon films as flexible free-standing anodes for Li-ion and Na-ion batteries. Carbon. 2018;126:9-16.

[8] Qiu Z, Lin Y, Xin H, Han P, Li D, Yang B, et al. Ultrahigh level nitrogen/sulfur codoped carbon as high performance anode materials for lithium-ion batteries. Carbon. 2018;126:85-92.

[9] Cai D, Wang C, Shi C, Tan N. Facile synthesis of N and S co-doped graphene sheets as anode materials for high-performance lithium-ion batteries. Journal of Alloys and

Compounds. 2018;731:235-42.

[10] Yun YS, Le V-D, Kim H, Chang S-J, Baek SJ, Park S, et al. Effects of sulfur doping on graphene-based nanosheets for use as anode materials in lithium-ion batteries. Journal of Power Sources. 2014;262:79-85.

[11] Sun D, Yang J, Yan X. Hierarchically porous and nitrogen, sulfur-codoped graphene-like microspheres as a high capacity anode for lithium ion batteries. Chemical Communications. 2015;51:2134-7.