Supporting Information

for

Platinum(II) Complexes of Benzannulated N^N-^O-

Amido Ligands: Bright Orange Phosphors With

Long-Lived Excited States

Issiah B. Lozada,^a J. A. Gareth Williams,^{b,*} and David E. Herbert^{a,*}

^{*a*} Department of Chemistry and the Manitoba Institute for Materials, University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba, R3T 2N2, Canada;

*david.herbert@umanitoba.ca

^b Department of Chemistry, Durham University, Durham, DH1 3LE, UK;

*j.a.g.williams@durham.ac.uk

Table of Contents

Figure S1. Cyclic voltammograms (—) and differential pulse voltammograms () of L1-L4 in CH_2Cl_2 with 0.1 mM of [NBu ₄][PF ₆] as the supporting electrolyte, glassy carbon as the working electrode, and Pt wire as the counter electrodes. CV scan rates were 100 mV/s. Potentials are listed vs. FcH ^{0/+} redox couple (FcH = ferrocene)
Figure S2. Scan rate dependence of cathodic events for 1-4
Figure S3. UV-Vis spectra of L1-L4 in CH ₂ Cl ₂ at 298 K. Inset shows normalized spectra7
Figure S4. Correlation between $E_{CT,exp}$ (cm ⁻¹) on Reichardt's solvent E_N^T parameters with aprotic and protic solvents treated together (), and protic () and aprotic () solvents treated separately
Figure S5. Correlation between $E_{CT,exp.}$ (cm ⁻¹) and $E_{CT,calc.}$ (cm ⁻¹) calculated using Catalan's multiparameter solvent approach.
Table S1. Reichardt's E_N^T and Catalan solvent (SP, SdP, SA and SB) parameters for 49
Table S2. Catalan solvent parameter coefficients and statistics obtained from linear regression. 9
Figure S6. Solid-state structure of 4 showing hydrogen bonding interaction with co-crystallized CHCl ₃ solvent molecules. 10
Estimation of empirical HOMO-LUMO energies from UV-Vis absorbance and cyclic voltammetry
Figure S7. Correlation between experimentally and computationally derived (a) HOMO and (b) LUMO energies of 1-4
Table S3. Select optimized structural parameters for the ground state (¹ GS _{eq}) 1-4 (RIJCOSX-rPBE0-D3(BJ)/def2-TZVP(-f)+def2/J).13
Table S4. Select optimized structural parameters for the lowest excited triplet state of 1-4(RIJCOSX-uPBE0-D3(BJ)/def2-TZVP(-f)+def2/J).13
Table S5. Fragment contributions to the ground state MOs of 1. 13
Table S6. Fragment contributions to the ground state MOs of 2 . 14
Table S7. Fragment contributions to the ground state MOs of 3 . 14
Table S8. Fragment contributions to the ground state MOs of 4. 14
Figure S8. Effects of inclusion of spin-orbit coupling on the calculated UV-Vis absorption spectra of 4
Figure S9. TDDFT simulated SOC-corrected spectrum (—), vertical excitations (—), and oscillator strengths of 1 in CH_2Cl_2 . Calculated energies and molar absorptivities (M ⁻¹ cm ⁻¹) at each peak maxima are shown with experimental (in parentheses)
Table S9. Spin-only and SOC-corrected TDDFT predicted singlet-singlet, singlet-triplet, and singlet-SOC vertical excitation energies ($f > 0.003$), MO contributions (>10%), singlet/triplet contributions (>5%) for 1. Entries in red reflect SOC calculated transitions which appear in valley regions of the absorption spectrum. 16

Table S10. Spin-only and SOC-corrected TDDFT predicted singlet-singlet, singlet-triplet, and singlet-SOC vertical excitation energies (f > 0.003), MO contributions (>10%) and singlet/triplet contributions (>5%) for **2**. Entries in red reflect SOC calculated transitions which appear in valley regions of the absorption spectrum. 18

Table S11. Spin-only and SOC-corrected TDDFT predicted singlet-singlet, singlet-triplet, and singlet-SOC vertical excitation energies (f > 0.003), MO contributions (>10%), singlet/triplet contributions (>5%) for **3**. Entries in red reflect SOC calculated transitions which appear in valley regions of the absorption spectrum. 20

Table S12. Spin-only and SOC-corrected TDDFT predicted singlet-singlet, singlet-triplet, and singlet-SOC vertical excitation energies (f > 0.003), MO contributions (>10%), singlet/triplet contributions (>5%) for 4. Entries in red reflect SOC calculated transitions which appear in valley regions of the absorption spectrum. 22

Figure S14. TDDFT simulated (FWHM = 3000 cm⁻¹, T = 298 K) and experimental (T = 295 K) phosphorescence spectra of **4** in CH₂Cl₂. The three substates (M_S = -1, 0, +1) of the lowest excited triplet state are considered. 25

Figure S15. TDDFT simulated (FWHM = 3000 cm⁻¹, CH₂Cl₂) and experimental phosphorescence spectra of **4** at 77 K. The three substates ($M_S = -1, 0, +1$) of the lowest excited triplet state are considered. 25

 Figure S16. Stackplot of emission spectra of 1-4 in EPA (diethyl ether / isopentane /ethanol 2:2:1

 v/v) at 77 K.
 26

Figure S21. HSQC spectrum of 1 in CDCl ₃	. 29
Figure S22. HMBC spectrum of 1 in CDCl ₃ .	. 29
Figure S23. HRMS (ESI-TOF positive mode) of 1	. 29
Figure S24. ¹ H NMR (500 MHz, 25 °C) spectrum of 2 in CDCl ₃	. 30
Figure S25. ¹³ C{ ¹ H} NMR (125 MHz, 25 °C) spectrum of 2 in CDCl ₃	. 30
Figure S26. ¹ H- ¹ H COSY spectrum of 2 in CDCl ₃	. 31
Figure S27. HSQC spectrum of 2 in CDCl ₃	. 31
Figure S28. HMBC spectrum of 2 in CDCl ₃ .	. 32
Figure S29. 2D-NOESY spectrum of 2 in CDCl ₃	. 32
Figure S30. HRMS (ESI-TOF positive mode) of 2	. 33
Optimized Coordinates	. 34
REFERENCES	. 41

Figure S1. Cyclic voltammograms (—) and differential pulse voltammograms (---) of L1-L4 in CH_2Cl_2 with 0.1 mM of [NBu₄][PF₆] as the supporting electrolyte, glassy carbon as the working electrode, and Pt wire as the counter electrodes. CV scan rates were 100 mV/s. Potentials are listed vs. FcH^{0/+} redox couple (FcH = ferrocene).

Figure S2. Scan rate dependence of cathodic events for 1-4.

Figure S3. UV-Vis spectra of L1-L4 in CH₂Cl₂ at 298 K. Inset shows normalized spectra.

Figure S4. Correlation between $E_{CT,exp}$ (cm⁻¹) on Reichardt's solvent E_N^T parameters with aprotic and protic solvents treated together (---), and protic (---) and aprotic (---) solvents treated separately.

Figure S5. Correlation between $E_{CT,exp.}$ (cm⁻¹) and $E_{CT,calc.}$ (cm⁻¹) calculated using Catalan's multiparameter solvent approach.

Solvent	$\lambda_{abs,CT}/nm$	$E_{\rm CT}/{\rm cm}^{-1}$	SP	SdP	SA	SB	E_N^T
CCl ₄	517	19342	0.768	0	0	0.044	0.052
benzene	504	19841	0.793	0.27	0	0.124	0.111
toluene	507	19724	0.782	0.284	0	0.128	0.099
CHCl ₃	490	20408	0.783	0.614	0.047	0.071	0.259
Et ₂ O	505	19802	0.617	0.385	0	0.562	0.117
anisole	495	20202	0.82	0.543	0.084	0.299	0.198
CH ₂ Cl ₂	484	20661	0.761	0.769	0.04	0.178	0.309
ClPh	500	20000	0.833	0.537	0	0.182	0.188
BrPh	500	20000	0.875	0.497	0	0.192	0.182
THF	493	20284	0.714	0.634	0	0.591	0.207
acetone	483	20704	0.651	0.907	0	0.475	0.355
DMF	481	20790	0.759	0.977	0.031	0.613	0.386
CH ₃ CN	474	21097	0.645	0.974	0.044	0.286	0.46
DMSO	474	21097	0.83	1	0.072	0.647	0.444
CNPh	488	20492	0.851	0.852	0.047	0.281	0.333
EtOAc	492	20325	0.656	0.603	0	0.542	0.228
<i>i</i> ProH	485	20619	0.633	0.808	0.283	0.83	0.546
1-BuOH	482	20747	0.674	0.655	0.341	0.809	0.586
CH ₃ OH	473	21142	0.608	0.904	0.605	0.545	0.762
EtOH	477	20964	0.633	0.783	0.4	0.658	0.654
20MeEtOH	479	20877	-	-	-	-	0.657

Table S1. Reichardt's E_N^T and Catalan solvent (SP, SdP, SA and SB) parameters for **4**.

Table S2. Catalan solvent parameter coefficients and statistics obtained from linear regression.

Regression Sta	atistics		Coefficients	Standard Error	t statistic	P-value
Multiple R	0.974	Intercept	19619	368	53.326	0.000
R Square	0.948	SP	-402	452	-0.890	0.387
Adjusted R Square	0.935	SdP	1649	133	12.382	2.81E-09
Standard Error	130.4	SA	774	220	3.517	0.003
Observations	20	SB	-151	176	-0.860	0.403

Figure S6. Solid-state structure of **4** showing hydrogen bonding interaction with co-crystallized CHCl₃ solvent molecules.

Estimation of empirical HOMO-LUMO energies from UV-Vis absorbance and cyclic voltammetry

Following a similar procedure employed Pan and co-workers¹, we estimated the HOMO and LUMO energies using the following equations:

$$E_{HOMO} = -(E_{onset,ox} + 4.8 - E_{FCH})$$
(1)

$$E_{LUMO} = -(E_{onset,red} + 4.8 - E_{FCH})$$
(2)

where E_{HOMO} and E_{LUMO} are the HOMO and LUMO energies, $E_{\text{onset,ox}}$ and $E_{\text{onset,red}}$ are the onset oxidation and reduction potentials estimated using DPV, 4.8 is the reference energy level of ferrocene (FcH, 4.8 eV below the vacuum level), and E_{FcH} is the FcH ^{0/+} potential vs. Ag/AgCl similarly estimated with DPV. Electrochemical parameters and experimentally derived HOMO-LUMO energies and gaps are summarized in Table 1. To corroborate the parameters and trends obtained from electrochemistry, we also estimated the optical gap (E_g) from the UV-Vis spectra of all compounds. This can be estimated from the following equation

$$E_g = \frac{hc}{\lambda_{onset}} \tag{3}$$

where *h* is Planck's constant, *c* is the speed of light in vacuum, and λ_{onset} is the onset of the UV-Vis spectra. We introduce a modification to equation (3) for the Pt(II) complexes. TDDFT analyses (see below) reveal that the lowest energy manifold can largely be assigned to HOMO \rightarrow LUMO transitions leading to

$$E_g = \frac{hc}{\lambda_{max}} \tag{4}$$

Figure S7. Correlation between experimentally and computationally derived (a) HOMO and (b) LUMO energies of **1-4**.

Bond / Å	1	2	3	4
Pt–N1	1.984	2.025	1.978	1.978
Pt–N2	2.015	1.998	1.991	2.012
Pt–O	1.984	1.986	1.979	1.981
Pt-Cl	2.318	2.319	2.314	2.314
Angle / °				
N1–Pt–N2	82.2	81.8	82.7	82.0
N1-Pt-O	178.5	173.1	178.5	176.1
N1–Pt–Cl	94.8	100.6	95.3	95.2
N2-Pt-O1	96.6	94.6	97.6	96.5
N2–Pt–Cl	176.7	169.6	178.7	176.0
O-Pt-Cl	86.1	84.1	84.4	86.6

Table S3. Select optimized structural parameters for the ground state (${}^{1}GS_{eq}$) 1-4 (RIJCOSX-rPBE0-D3(BJ)/def2-TZVP(-f)+def2/J).

Table S4. Select optimized structural parameters for the lowest excited triplet state of 1-4 (RIJCOSX-uPBE0-D3(BJ)/def2-TZVP(-f)+def2/J).

Bond / Å	1	2	3	4
Pt–N1	1.983	2.018	1.984	1.981
Pt–N2	1.994	1.976	1.992	1.982
Pt–O	1.985	1.987	1.983	1.986
Pt-Cl	2.288	2.291	2.287	2.276
Angle / °				
N1-Pt-N2	82.1	81.8	82.3	82.2
N1-Pt-O	178.4	175.3	178.0	178.2
N1–Pt–Cl	95.8	100.2	95.7	95.8
N2-Pt-O1	96.8	95.0	96.6	96.5
N2–Pt–Cl	177.5	168.0	177.6	176.0
O-Pt-Cl	85.4	83.6	85.5	85.6

Table S5. Fragment contributions to the ground state MOs of 1.

MOs	<i>E</i> /eV	Pt	Cl	HC=N	Arphen	NAcAc	CH ₃
L+4	-0.228	43	13	8	19	17	1
L+3	-0.254	10	3	7	62	15	4
L+2	-1.118	4	0	6	52	37	0
L+1	-1.534	3	0	7	69	20	1
L	-2.186	2	0	28	51	17	1
Н	-5.834	18	9	1	23	48	0
H-1	-6.663	32	0	15	39	11	2
H-2	-6.851	39	32	1	14	13	1
H-3	-6.945	19	0	3	70	7	1
H-4	-6.966	59	21	2	10	7	0

MOs	<i>E</i> /eV	Pt	Cl	(CH ₃)C=N	Ar ^{phen}	NAcAc	CH ₃
L+4	-0.191	9	2	8	68	9	4
L+3	-0.32	40	11	7	13	29	1
L+2	-1.141	6	1	6	57	30	0
L+1	-1.536	4	0	7	62	25	1
L	-2.081	2	0	31	50	15	1
Н	-5.743	20	8	2	23	46	0
H-1	-6.553	38	12	14	21	14	1
H-2	-6.683	40	32	2	13	12	1
H-3	-6.83	12	10	5	68	3	2
H-4	-6.918	80	3	3	8	6	0

 Table S6. Fragment contributions to the ground state MOs of 2.

Table S7. Fragment contributions to the ground state MOs of **3**.

MOs	<i>E</i> /eV	Pt	Cl	HC=N	Ar ^{phen}	NAcAc	<i>t</i> Bu
L+4	-0.227	44	13	8	16	13	1
L+3	-0.259	8	2	7	65	12	4
L+2	-1.116	4	0	6	52	32	1
L+1	-1.535	3	0	6	68	18	2
L	-2.18	2	0	29	50	15	1
Н	-5.838	19	9	1	23	41	0
H-1	-6.669	34	0	15	37	8	2
H-2	-6.855	39	32	1	16	11	1
H-3	-6.936	13	0	4	74	5	2
H-4	-6.965	65	20	2	6	3	0

 Table S8. Fragment contributions to the ground state MOs of 4.

MOs	<i>E</i> /eV	Pt	Cl	HC=N	Arphen	NAcAc	CF ₃
L+4	-0.293	50	15	8	6	21	0
L+3	-0.671	2	0	3	70	20	6
L+2	-1.27	5	1	8	51	35	1
L+1	-1.712	2	0	6	73	17	1
L	-2.421	2	0	28	52	16	2
Н	-5.958	21	10	1	20	47	0
H-1	-6.808	46	4	11	21	18	0
H-2	-6.947	38	35	2	13	12	0
H-3	-7.057	78	7	2	4	7	0
H-4	-7.115	40	39	4	9	7	0

Figure S8. Effects of inclusion of spin-orbit coupling on the calculated UV-Vis absorption spectra of **4**.

Figure S9. TDDFT simulated SOC-corrected spectrum (—), vertical excitations (—), and oscillator strengths of **1** in CH₂Cl₂. Calculated energies and molar absorptivities ($M^{-1}cm^{-1}$) at each peak maxima are shown with experimental (in parentheses).

Table S9. Spin-only and SOC-corrected TDDFT predicted singlet-singlet, singlet-triplet, and singlet-SOC vertical excitation energies (f > 0.003), MO contributions (>10%), singlet/triplet contributions (>5%) for 1. Entries in red reflect SOC calculated transitions which appear in valley regions of the absorption spectrum.

$^{1}S_{n}$	E/eV	$f_{ m osc}$	MO contributions (> 10%)					
1	2.82	0.069	H->L (97%)					
2	3.52	0.047	H->L+1(75%)	H->L+1(75%), H-1->L (12%)				
3	3.71	0.088	H-1->L (43%)	, H-2->L (40%)				
4	3.72	0.025	H-2->L (35%), H-4->	L (34%), H-1->L (13%)				
5	3.77	0.011	H-4->L (28%), H-3->I	L (19%), H->L+2 (15%),				
			H-2->]	L (12%)				
³ T _n	E/eV	fosc	MO contribu	itions (> 10%)				
1	2.21	0.000	H->L (65%),	H->L+1 (12%)				
2	2.67	0.000	H-1->]	L (61%)				
3	3.08	0.000	H->L+1 (45%), H->L	(26%), H->L+2 (13%)				
4	3.23	0.000	H-3->L (30%)	, H->L+2 (20%)				
5	3.32	0.000	H->L+4 (41%), H-2->L-	+4 (13%), H->L+3 (11%),				
			H-3->]	L (10%)				
6	3.43	0.000	H-1->L (19%), H-3->L	(18%), H-3->L+1 (18%),				
	2.50	0.000	H->L+2 (14%)					
7	3.50	0.000	H-3->L (19%), H-1->L+1 (18%), H->L+2 (12%)					
8	3.56	0.000	H-2->]	L (64%)				
9	3.68	0.000	H-4->L (61%), H-5->]	L (11%), H-3->L (10%)				
10	3.72	0.000	H-1->L+2 (25%), H-3->I	L+1 (17%), H->L+2 (10%)				
11	3.80	0.000	H-4->L+4 (22%), H-1->I	L+4 (16), H-3->L+4 (11%),				
			H-4->]	L (10%)				
SOC	E/eV	fosc	¹ S _n contributions (> 5%)	³ T _n contributions (> 5%)				
4	2.79	0.005	1 (6%)	2 (90%)				
7	2.91	0.050	1 (85%)	2 (5%), 9 (6%)				
13	3.27	0.003	4 (31%), 5 (38%)	3 (11%)				
20	3.50	0.025	2 (18%), 3 (18%)	6 (8%), 9 (25%), 11 (9%)				
24	3.58	0.026	2 (16%), 3 (17%), 5 (10%)	6 (8%), 9 (13%), 11 (6%),				
				12 (6%)				
28	3.68	0.005	-	7 (62%), 10 (7%), 12 (8%), 13 (8%)				
30	3.70	0.161	2 (14%), 4 (13%), 6 (10%)	7 (5%), 9 (16%), 10 (5%).				
-		-		11 (5%)				

Figure S10. TDDFT simulated SOC-corrected spectrum (—), vertical excitations (—), and oscillator strengths of **2** in CH₂Cl₂. Calculated energies and molar absorptivities (M^{-1} cm⁻¹) at each peak maxima are shown with experimental (in parentheses).

Table S10. Spin-only and SOC-corrected TDDFT predicted singlet-singlet, singlet-triplet, and singlet-SOC vertical excitation energies (f > 0.003), MO contributions (>10%) and singlet/triplet contributions (>5%) for **2**. Entries in red reflect SOC calculated transitions which appear in valley regions of the absorption spectrum.

¹ S _n	E/eV	$f_{ m osc}$	MO contributions (> 10%)
1	2.84	0.078	H->L (97%)
2	3.36	0.067	H->L+1 (67%), H->L+2 (12%)
3	3.63	0.048	H-1->L (44%), H->L+2 (22%), H->L+1 (15%)
4	3.64	0.018	H-2->L (27%), H-1->L (19%), H->L+2 (19%), H->L+3 (11%)
5	3.71	0.045	H-2->L (66%), H-1->L (18%)
6	3.81	0.031	H-4->L (67%), H-3->L (22%)
7	3.89	0.026	H-L+3 (23%), H-1->L+1 (18%), H-4->L (17%), H-3->L (10%)
8	3.98	0.061	H-3->L (25%), H->L+2 (16%), H-5->L (14%)
9	4.02	0.053	H-5->L (49%)
10	4.07	0.095	H-5->L (23%), H->L+2 (15%), H->L+3 (15%),
			H-1->L+1 (14%)
11	4.08	0.007	H-2->L+1 (17%), H-4->L+1 (16%)
³ T _n	E/eV	fosc	MO contributions (> 10%)
1	2.20	0.000	H->L (62%), H->L+1 (17%)
2	2.68	0.000	H-1->L (38%), H->L+1 (20%), H->L+2 (13%)
3	2.98	0.000	H->L (25%), H->L+1 (17%), H-1->L (11%)
4	3.16	0.000	H->L+1 (21%), H->L+3 (17%), H->L+2 (13%)
5	3.24	0.000	H->L+3 (26%), H-3->L (21%), H->L+2 (10%)
6	3.40	0.000	H-1->L+1 (23%), H-1->L (20%), H-3->L+2 (12%),
			H-1->L+3 (10%)
7	3.46	0.000	H-3->L (47%), H->L+2 (14%)
8	3.48	0.000	H-3->L+1 (18%), H-1->L+2 (15%), H-1->L+3 (14%),
			H-2->L (10%)
9	3.51	0.000	H-2->L (42%), H->L+2 (12%)
10	3.61	0.000	H-4->L+3 (37%), H-4->L+2 (16%), H-4->L+1 (13%)
11	3.70	0.000	H-4->L (26%), H-2->L (6%)
12	3.71	0.000	H-2->L+3 (13%), H-5->L+3 (12%)
13	3.81	0.000	H-4->L (50%)
14	3.86	0.000	H-5->L (51%)
15	3.99	0.000	H-1->L+1 (30%), H-1->L+3 (13%), H-7->L (11%)
16	4.10	0.000	H-2->L+1 (49%)

SOC	E/eV	fosc	Singlet contributions (> 5%)	Triplet contributions (> 5%)
4	2.79	0.008	1 (11%)	2 (82%)
7	2.96	0.055	1 (64%)	2 (12%), 3 (11%)
9	2.99	0.007	1 (10%)	2 (5%), 3 (56%), 6 (9%)
14	3.27	0.005	2 (13%)	4 (19%), 5 (8%), 6 (16%), 8% (10%), 12 (8%)
16	3.33	0.006	2 (24%)	6 (7%), 8 (5%), 9(5%), 10(33), 12(9%)
19	3.40	0.006	6 (5%)	4 (10%), 5 (25%), 6 (18%), 8 (%), 10 (7%)
21	3.48	0.003	-	7 (30%), 11 (13%), 12 (5%), 13 (7%)
23	3.50	0.010	4 (9%)	7 (33%) ,13 (8%)
24	3.53	0.006	6 (6%)	9 (30%), 10 (14%),11 (9%)
27	3.57	0.013	4 (14%)	6 (26%), 8 (18%), 9 (8%)
28	3.60	0.005	12 (11%)	6 (3%), 10 (16%), 12 (25%)
31	3.63	0.004	-	6 (15%), 7 (32%), 8 (16%), 9 (17%)
32	3.68	0.051	2 (17%), 3 (31%), 4 (8%)	12 (8%)
33	3.72	0.095	3 (6%), 5 (34%)	7 (7%), 11 (8%), 13 (14%)

Figure S11. TDDFT simulated SOC-corrected spectrum (—), vertical excitations (—), and oscillator strengths of **3** in CH₂Cl₂. Calculated energies and molar absorptivities ($M^{-1}cm^{-1}$) at each peak maxima are shown with experimental (in parentheses).

contributions (>5 %) for **3**. Entries in red reflect SOC calculated transitions which appear in valley regions of the absorption spectrum. ¹S_n E/eV MO contributions (> 10%) fosc 1 2.82 0.065 H->L (97%) 2 H->L+1 (75%), H-3->L (12%) 3.52 0.051 3 3.71 0.080 H-1->L (44%), H-2->L (40%) 4 3.73 0.024 H-4->L (44%), H-2->L (29%), H-1->L (11%) 5 3.78 0.012 H-4->L (27%), H->L+2 (18%), H-3->L (15%), H-2->L (14%) 6 H-2->L (23%), H-2->L (15%), H-1->L (14%), H-4->L (12%), H-3.86 0.177 >L+2 (12%) 7 H-5-> L (83%), H-4->L (14%) 3.87 0.003 8 3.95 H-3->L (28%), H->L+4 (24%) 0.072 9 4.04 0.125 H->L+2 (42%), H->L+4 (30%) ³T_n E/eV fosc MO contributions (> 10%) 1 2.23 0.000 H->L (64%), H->L+1 (14%) 2 2.680.000 H-1->L (61%) 3 3.07 0.000 H->L+1 (45%), H->L (27%), H->L+2 (13%) H-3->L (33%), H->L+2 (20%) 4 3.23 0.000 5 3.33 0.000 H->L+4 (44%), H-2->L+4 (14%), H-3->L (11%) 6 3.43 0.000 H-3->L (22%), H-1->L (19%), H-3->L (18%), H->L+2 (15%) 7 3.52 0.000 H-1->L+1 (21%), H-3->L (17%), H->L+2 (12%), H-3->L+2 (10%) 8 3.57 0.000 H-2->L (67%) 9 H-4->L (67%), H-5->L (11%) 3.68 0.000 10 3.73 0.000 H-1->L+2 (25%), H-3->L+1 (18%), H->L+2 (11%) 11 3.81 0.000 H-5->L (71%) 12 3.89 0.000 H-4->L+4 (32%), H-1->L+4 (15%), H-4->L (11%) 13 3.91 H-1->L+4 (24%), H-4->L+4 (16%), H-2->L+4 (15%) 0.000 14 4.04 0.000 H-1->L+1 (30%), H-1->L+3 (12%), H-8->L (11%) 15 4.06 0.000 H-5->L+4 (47%) SOC E/eV Singlet contributions (> 5%) fosc Triplet contributions (> 5%) 4 2.79 0.005 1 (6%) 2 (90%) 7 2.92 0.049 1 (85%) 2 (6%), 9 (6%) 13 1 (85%) 3.28 0.006 3 (9%), 4 (29%), 5 (40%), 20 3.51 2 (19%), 3 (19%) 0.024 6 (7%), 9 (26%), 11 (8%) 24 2 (18%), 3 (19%), 5 (11%) 3.59 0.032 6 (6%), 9 (12%), 11 (6%) 27 3.67 0.006 7 (80%) 7 (74%), 10 (5%), 12 (6%), 13 28 3.69 0.008

Table S11. Spin-only and SOC-corrected TDDFT predicted singlet-singlet, singlet-triplet, and singlet-SOC vertical excitation energies (f > 0.003), MO contributions (>10%), singlet/triplet

2 (12%), 4 (11%), 5 (8%), 6

(10%)

30

3.71

0.146

(6%)

7 (12%), 9 (16%), 10 (5%), 11

(5%)

Figure S12. TDDFT simulated SOC-corrected spectrum (—), vertical excitations (—), and oscillator strengths of **4** in CH_2Cl_2 . Calculated energies and molar absorptivities ($M^{-1}cm^{-1}$) at each peak maxima are shown with experimental (in parentheses).

Table S12. Spin-only and SOC-corrected TDDFT predicted singlet-singlet, singlet-triplet, and singlet-SOC vertical excitation energies (f > 0.003), MO contributions (>10%), singlet/triplet contributions (>5%) for 4. Entries in red reflect SOC calculated transitions which appear in valley regions of the absorption spectrum.

${}^{1}S_{n}$	E/eV	fosc	MO contributions (> 10%)
1	2.71	0.069	H->L (97%)
2	3.46	0.026	H->L+1 (67%), H-1->L (17%)
3	3.55	0.066	H-1->L (53%), H->L+1 (16%), H-2->L (16%),
			H-3->L (11%)
4	3.59	0.002	H-3->L (52%), H-2->L (45%)
5	3.67	0.080	H-4->L (30%), H-2->L (24%), H-3->L (18%),
			H-1->L (11%)
6	3.76	0.010	H->L+2 (46%), H-4->L (28%), H->L+4 (12%)
7	3.82	0.196	H-4->L (37%), H-3->L (13%), H-2->L (12%),
			H->L+2 (11%)
8	3.91	0.067	H-5->L (55%), H-1->L+1 (10%)
9	4.06	0.058	H->L+4 (55%), H->L+2 (24%)
³ T _n	E/eV	$f_{ m osc}$	MO contributions (> 10%)
1	2.17	0.000	H->L (69%)
2	2.68	0.000	H-1->L (55%)
3	2.99	0.000	H->L+1 (51%), H->L (22%)
4	3.2	0.000	H-5->L (32%), H->L+2 (23%)
5	3.32	0.000	H->L+4 (36%), H-5->L (26%)
6	3.4	0.000	H->L+2 (24%), H-5->L+1 (16%), H-2->L (14%), H-5->L (13%)
7	3.42	0.000	H-2->L (24%), H-1->L (18%)
8	3.52	0.000	H-3->L (49%)
9	3.59	0.000	H-3->L (34%), H-5->L (13%)
10	3.62	0.000	H-4->L (48%), H-2->L (24%)
11	3.71	0.000	H-1->L+2 (23%), H-4->L (17%), H-5->L+1 (17%)
12	3.86	0.000	H-1->L+4 (33%), H-3->L+4 (26%)
13	3.91	0.000	H-3->L+4 (35%), H-1->L+4 (20%)
14	3.99	0.000	H-1->L+1 (37%)
15	4.04	0.000	H-4->L+4 (34%), H-2->L+4 (22%)
16	4.09	0.000	H-2->L+1 (22%)

SOC	E/eV	fosc	Singlet contributions (> 5%)	Triplet contributions (> 5%)
4	2.73	0.026	1 (41%)	2 (53%)
7	2.83	0.028	1 (49%)	2 (40%), 8 (6%)
13	3.24	0.003		4 (41%), 5 (30%)
14	3.34	0.016	2 (15%), 3 (21%)	6 (7%), 7 (15%), 8 (17%), 10 (5%)
16	3.37	0.006	2 (5%), 5 (5%)	7 (47%), 8 (14%), 9 (6%), 10 (5%)
18	3.40	0.004	-	4 (44%), 5 (37%), 7 (8%)
19	3.40	0.010	-	4 (28%), 5 (38%), 7 (13%)
20	3.40	0.008	-	4 (38%), 5 (35%)
23	3.48	0.007	-	6 (62%), 7 (9%), 8 (5%)
24	3.53	0.004	2 (22%), 3 (18%), 6 (8%)	6 (8%), 8 (13%), 10 (5%)
25	3.59	0.004	-	9 (8%), 11 (16%), 12 (25%), 13 (22%), 15 (9%)
26	3.60	0.003	2 (6%)	9 (9%), 11 (19%), 12 (22%) 13 (18%)
27	3.62	0.148	2 (18%), 4 (7%), 5 (11%), 7 (10%)	8 (10%), 9 (9%), 10 (6%)

Excited State Dynamics of 4

The excited state dynamics of **4** were explored using the ESD module implemented in Orca v. $4.2.1.^{2,3}$ The average rates of ISC (5) and phosphorescence (6) were estimated using the following equations:

$$k^{ISC,aver.} = k^{ISC,-1} + k^{ISC,0} + k^{ISC,+1}$$
(5)

$$k^{Phos,aver.} = \frac{k_{1} + k_{2}e^{-\left(\frac{\Delta E_{1,2}}{k_{B}T}\right)} + k_{3}e^{-\left(\frac{\Delta E_{1,3}}{k_{B}T}\right)}}{1 + e^{-\left(\frac{\Delta E_{1,2}}{k_{B}T}\right)} + e^{-\left(\frac{\Delta E_{1,3}}{k_{B}T}\right)}}$$
(6)

Nuclear Coordinates

Figure S13. Schematic of photophysical processes and calculated parameters.

Table S13. Calculated rate of intersystem crossing from ${}^{1}S_{1}({}^{1}GS_{eq})$ and ${}^{1}S_{7}({}^{1}GS_{eq})$ to the three substates of ${}^{3}T_{1,eq}$ ($M_{S} = -1, 0, +1$) for 4 at 298 K and 77 K in CH₂Cl₂.

Temp / K	k_1 / s^{-1}	k_2 / s^{-1}	k_3 / s^{-1}	<i>k</i> aver. / s ⁻¹
	$M_{\rm S} = -1$	$M_{\rm S}=0$	$M_{\rm S} = +1$	
$S_1(^1GSeq) \rightarrow T_{1,Ms}(T_{1,eq})$	3.845×10 ¹²	0	2.317×10 ¹³	8.870×10 ¹²
$S_7(^1GSeq) \rightarrow T_{1,Ms}(T_{1,eq})$	2.928×10 ¹³	0	0	1.020×10^{13}

Table S14. Calculated phosphorescence parameters for 4 at 298 K and 77 K in CH₂Cl₂.

Temp / K	k_1 / s^{-1}	k_2 / s^{-1}	k_3 / s^{-1}	$k_{\rm aver.}$ / s ⁻¹
298	36 631	57 303	77 508	56 777
77	29 492	52 137	72 632	49 973

Figure S14. TDDFT simulated (FWHM = 3000 cm⁻¹, T = 298 K) and experimental (T = 295 K) phosphorescence spectra of **4** in CH₂Cl₂. The three substates (M_S = -1, 0, +1) of the lowest excited triplet state are considered.

Figure S15. TDDFT simulated (FWHM = 3000 cm⁻¹, CH₂Cl₂) and experimental phosphorescence spectra of **4** at 77 K. The three substates ($M_S = -1, 0, +1$) of the lowest excited triplet state are considered.

Figure S16. Stackplot of emission spectra of 1-4 in EPA (diethyl ether / isopentane /ethanol 2:2:1 v/v) at 77 K.

Figure S17. Spin density maps (isovalue = 0.004) of **1-4** at the equilibrium geometries of the lowest-lying excited triplet state. Shown in square brackets are the Löwdin/Mulliken spin densities on Pt.

NMR and HRMS Figures

Figure S18. ¹H NMR (500 MHz, 25 °C) spectrum of 1 in CDCl₃.

Figure S20. ¹H-¹H COSY spectrum of 1 in CDCl₃.

IBML-10-052b5-HSQC.1.ser — RXN-10-052 Pt(MeNNO)Cl — HSQCGP CDCl3 C:\\ Herbert 1

-0 1.1 - 20 1.1 14.1 40 60 80 . 100 udd 1.1 İ İ Ę 120 140 -160 - 180 200 11.0 10.0 0.0 9.0 8.0 7.0 4.0 3.0 2.0 1.0 6.0 5.0 f2 (ppm)

Figure S21. HSQC spectrum of 1 in CDCl₃. IBML-10-052b5-HMBC.1.ser – RXN-10-052 Pt(MeNNO)CI – HMBCGPND CDCl3 C:\\ Herbert 1

Figure S22. HMBC spectrum of 1 in CDCl₃.

Figure S23. HRMS (ESI-TOF positive mode) of 1.

Figure S24. ¹H NMR (500 MHz, 25 °C) spectrum of 2 in CDCl₃.

IBML-10-053b5C.1.fid — RXN-10-053 recrystallized sample from CHCl3/Et20 — C13CPD CDCl3 C:\\ Herbert 1

Figure S25. ¹³C{¹H} NMR (125 MHz, 25 °C) spectrum of 2 in CDCl₃.

IBML-10-053b5-COSY.1.ser - RXN-10-053 recrystallized sample from CHCl3/Et20 - COSYGPSW CDCl3 C:\\ Herbert 1

Figure S26. ¹H-¹H COSY spectrum of 2 in CDCl₃.

IBML-10-053b5-HSQC.1.ser — RXN-10-053 recrystallized sample from CHCl3/Et20 — HSQCGP CDCl3 C:\\ Herbert 1

Figure S27. HSQC spectrum of 2 in CDCl₃.

Figure S28. HMBC spectrum of 2 in CDCl₃.

IBML-10-053b5-NOE.1.ser — RXN-10-053 recrystallized sample from CHCl3/Et2O — NOESYPHSW CDCl3 C:\\ Herbert 1

Figure S29. 2D-NOESY spectrum of 2 in CDCl₃.

Figure S30. HRMS (ESI-TOF positive mode) of 2.

Optimized Coordinates

1, ¹GS_{eq}

С	3,64099155062907	7.71398624007048	8.54078991755222
н	3 66085520156593	6 81299740130944	7 93552098767605
C	3 52517201060000	7 661/60/877/590	9 95225738099578
C	2 42502552422220	6 42241075577220	10 60057/27690013
C II	3.43303332432320	6.42241075577250	10.00937427009913
Н	3.442/1994425982	5.514/4619118351	10.016858/553/8/6
С	3.34319906980158	6.3/45/0650//04/	11.97705022012024
Н	3.27493556827839	5.42137386393497	12.48683935132515
С	3.33348658815265	7.56545129394147	12.71609904540491
Н	3.26130327612409	7.52455183281692	13.79670107856893
С	3.40389136736768	8.78513741457966	12.08681772129385
Н	3.38550071577152	9.68819589995348	12.68216890972175
С	3.49983071407732	8.86299067569080	10.68923190045281
С	3.55857459676318	10.10251134300020	9.95737804579744
C	3 69032703217882	10 04261646032461	8 56243557078316
Ĉ	3 75329981819312	11 21382043075438	7 76449160784690
C	3 55539101370367	12 /22/2930670397	8 /1298816751185
	2 4 6 7 4 9 0 6 2 0 2 5 1 2	12.42242950070597	7 0001000000000000000000000000000000000
н	3.468/4806302513	13.34183896851751	7.86216555619912
C	3.43638630540878	12.505/9150266/52	9.80622237622328
С	3.46286123035922	11.36063223092182	10.56786094785203
Н	3.36586633442455	11.43405259159642	11.64322933520231
С	3.25126010736515	13.85606750504569	10.42835149534051
С	4.60923032874852	13.33855705408571	5.85861518954927
Н	3.70009421962398	13.93019740672750	5.99105319387207
Н	5.17757065764593	13.79160267657216	5.04938171883164
Н	5.19876753335655	13.40776840713657	6.77292929285516
С	4.29790072155575	11.91164360470463	5.49908871942725
С	4 43083327863673	11.62662967515458	4.13634243224913
н	4 68249001970100	12 47321115258357	3 51371275170261
C	1 31952216642510	10 /127/000180802	3 15735999117389
C	4 50949788421026	10.396568669178/9	1 07155075550/30
	4.JUJ49700421020	0.0175170722740	1 7000000000000
H	5.30495285274161	9.691/51/8/33/49	1.72282263557927
Н	4./5940864615190	11.38001244707317	1.5//05169116120
Н	3.59841339069812	10.030631/4469488	1.49318216314858
CL	3.87025691903977	6.75597072528886	5.49796090992141
N	3.73365252993340	8.83815181587929	7.88730425330608
Ν	3.96231517779865	10.99127398246282	6.40098676040653
0	4.09612422749563	9.27209685908492	3.96388088973166
Pt	3.90025698659982	9.03459450386048	5.92362364526763
Н	3.86612193769574	14.60826903505056	9.93090616391603
Н	3.51458840848721	13.84612984864107	11.48706009085698
Н	2.21011517198218	14.18182546528196	10.34216510039252
1. T ₁	a de la companya de l		
-, - 1,	~ 4		
С	3.64091397656776	7.67001189027181	8.55988608524942
Н	3.67259971019398	6.76913315725141	7.96229227634256
С	3.52698060249842	7.63566465472483	9.95320504067109
Ċ.	3,45098558970904	6.40525189060018	10.64699219755702
н	3.46942591175715	5.48456097789733	10.07505787503275
C	3 36112841243195	6 38268440740407	12 01091166586034
с ц	3 30473491039104	5 43646287921874	12 53577612566253
C	3 33681641967703	7 5863142260134	12 73950322501805
<u> </u>		,	

Н	3.26603630097516	7.56102290982921	13.82030208480231
С	3.38980340491351	8.79244092154374	12.08542940258651
Н	3.35897417851243	9.70599839449291	12.66523791593334
С	3.48119901873060	8.85140009204606	10.68638626377985
С	3.52170198345911	10.08298062387715	9.94460607816017
C	3 64801000023510	10 01005684820925	8 54399501474171
C	3 72994322909786	11 19492276365234	7 74356359634092
C	3 53679448009138	12 11573072621112	8 39787467289380
	3.55075440005150	12 25540052400200	7 92042622219550
п	3.43496430609623	10 60201200771000	7.83043832318333
C	3.41362301636671	12.52301280771909	9.76230484926323
С	3.43644502068486	11.34846373189492	10.53254628321148
Н	3.34580030421238	11.432364/100/850	11.60/99851042206
С	3.24977207104930	13.84648716011460	10.44416540247432
С	4.71248798231488	13.32746602095810	5.88571607430769
Н	3.85276103045884	13.99044307655381	6.02050611583951
Н	5.32017022805987	13.75194389044787	5.08804264516468
Н	5.30444206270703	13.34936059377599	6.80085996655282
С	4.32012521355810	11.92932378252022	5.49908466509508
С	4.40845733396529	11.64420591691558	4.14199380531090
Н	4.66424461504942	12.49381335054412	3.52196038722582
С	4.28796392252438	10.43542937545639	3.43648319037850
С	4.48554655608789	10.41486925019137	1.95524856368972
Н	5.29576007553664	9.72393803291537	1.70977224836937
Н	4.72475877715622	11.40081830464453	1.55935095248660
н	3 58659087514616	10 03488857695199	1 46335352344259
Cl	3 87594012279591	6 80627155449541	5 44052218038795
N	3 71111567523292	8 82364282784933	7 88606813278310
N	3 96769767229/09	10 9721/90//35962	6 42221238206013
0	4 05055700409090	0 20027669057170	2 06247070200013
	4.05955709408080	9.30027008937170	5.90247978209230
F L	2 41071420510007	9.04100340274000	0.75140046016611
п	3.410/142031000/	12 04702060424427	9.75142645616511
н	3.95966480705470	13.94/8296843443/	11.208018210/2804
н	2.24/94/32580931	13.95610099389907	10.8/014053634599
2 10	2		
2, U.	Jeq		
С	3.64851325668671	7.71266951215108	8.52508055200103
С	3.88807931521629	6.42881648625052	7.81335003273100
С	3.58800052669988	7.70551837388345	9.96579594360683
С	3.62930572037754	6.49268023451959	10.67824028209702
Н	3.70574685552652	5.55937394513205	10.13888597183793
С	3.56276219566733	6.47623212244049	12.04887927833768
Н	3.59062046268635	5.53285641063186	12.58057702062919
C	3 46344511453666	7 67777964806296	12 75685835905642
ц Ц	3 42620154437715	7 66609342103393	13 83990347583838
C	3 40783653610696	8 87272161129748	12 08213032821888
U U	3 33179615479889	9 79295120440001	12 64519561282150
п	2 45016120507049	9.1220175662424	10 67095709624212
C	3.43910139397040	0.912001/3000424	10.07965706054212
C	3.42380817677616	10.1398396261/125	9.9292/656/8/2/6
C	3.52484867060562	10.05083118739565	8.53/8930/884323
C	3.648340/29/3/10	11.222664/2886/55	/./49968/9408454
С	3.42396537164237	12.44180010048457	8.36250347612368
H	3.36505708727287	13.3446/763084438	7.77636691152589
С	3.24776712385370	12.54363557116875	9.74709257725506
С	3.29352771750121	11.40627338734430	10.52013135223583
Н	3.18647950189488	11.49070336802249	11.59352949482810
С	3.00497202648131	13.89447112123509	10.34587738919222

С	5.00096743785895	13.22298730996484	6.01902358459534
Н	4.21058383359562	13.97655351313282	5.96912812918092
Н	5.79074602092890	13.54172972996127	5.34070953926442
н	5 39357215685861	13 20506374058769	7 03496380356333
	4 40228506460001	11 00120040222250	F F729022F460F27
	4.493283984899991	11.00139940222230	1 01050012651160
C	4.66216322474139	11.61116/93034933	4.21052213651168
Н	5.19613300815954	12.36114714049608	3.64438074081685
С	4.18880973290372	10.52413005440378	3.47687410710691
С	4.49491655382923	10.44783360911215	2.01211630392820
Н	5.24843407286972	9.67063435145449	1.85796997103555
Н	4.87838053205498	11.38823933583425	1.61922254891509
Н	3.60412503761921	10.14087493046798	1.46308867284378
Cl	2 39976893307205	7 18912738525230	5 18085656599433
N	3 5/3803736/7073	8 84003259803988	7 85719930893272
N	2 06147200562014	11 00077554616916	6 4108965309364
IN	2 52000000000000		0.41088985509584
U	3.52090000075507	9.53706706651675	5.91465199746606
Pt	3.41606325638520	9.15904038301863	5.86156295973470
Н	3.60606317247858	14.65996885003727	9.85202414604536
Н	3.24193661475896	13.90647252761642	11.41075472606308
Н	1.95563823463443	14.18275023932033	10.22894136278222
Н	4.17455677406195	6.60029666945569	6.78193948642442
Н	2.98925736518879	5.80966382795414	7.79601214914481
Н	4.67665736004126	5.87963233060868	8.33133126645131
2. T ₁	20		
_, _1,	-4		
С	3.65966039438627	7.67608662919302	8.55717800342449
С	3.93963671416907	6.40947617526546	7.83067068306883
С	3.58102687432862	7.68398935044045	9.97135946523786
С	3 63272238763062	6 47810528557361	10 71200851341812
н	3 71765080409112	5 53703885939974	10 18719150451955
C	3 559/5733109970	6 18180619586038	12 0782108359866
	2 60204002026000		12.07021090339000
п	3.39284003033980	5.54495049512550	12.0210/131039230
C	3.44318050605203	7.69266776032831	12.///5526120109/
Н	3.39815762561277	7.69251326297658	13.85994818305805
С	3.37890246403673	8.87655518543012	12.08464585635125
Н	3.28830309082016	9.80300339914190	12.63653016823383
С	3.43337528829812	8.90390969089044	10.68287557717897
С	3.39724987628178	10.12444224783756	9.92454346017067
С	3.49384140587372	10.02183118525035	8.52636452464228
С	3.63894742172280	11.20389382706056	7.72926088692401
С	3.42550396590873	12.46680914241154	8.34529255412375
Н	3.36233100241047	13.35782444576837	7.74103662754079
С	3.24612785135266	12.56405631492564	9.70050017293039
C	3 28525828908591	11 39861////28228	10 / 8850575797130
U U	2 10021206024027	11 /0011610260005	11 56202200754274
п	2 01204200500774	12 00004007071601	10 25240052142100
C	3.01304290599774	13.89064087971501	10.35348852142189
C	5.112/9888016230	13.1/10888///0981	6.05612624845374
Н	4.40001496811664	14.00160895393731	6.05976520417256
Н	5.92423159192091	13.45068925200262	5.38425739983672
Н	5.51992499339655	13.07087736236970	7.06183005345134
С	4.50039757672888	11.89305149315028	5.56671379774208
С	4.58645442321163	11.64859547395230	4.20355109137882
Н	5.08092077637655	12.42196644767984	3.62939114358549
С	4.14694799917579	10.54649325431911	3,45637237870100
Ĉ	4 43735878272939	10.47621588641250	1.99150670041186
ц	5 2035700/230526	9 71/05055377657	1 815202000022704
11	J. 2000/007200020	J. I T T J J J J J J J J J J J J J J J J J	1.0102020222104

	Н	4.79703227463906	11.42629107139667	1.59813174041529
	Н	3.54669334721737	10.15936529817604	1.44596532204161
	Cl	2.43226902272523	7.21455910763568	5.19471327570492
	Ν	3.52785204841502	8.83061546258896	7.86893675042720
	Ν	3.96853872272170	10.97185369424605	6.43329438471002
	0	3.53736124684609	9.53120014622489	3.92931876835160
	Pt	3.46090299267843	9.14491426895737	5.87670544938700
	Η	3.21424993681458	14.71090777209485	9.66356480336011
	Η	3.65933237168864	14.01396396667442	11.22560504033462
	Η	1.98060359417832	13.98471755811208	10.70417316517385
	Η	4.32933858940102	6.60835727267220	6.83741500137132
	Η	3.04012408321658	5.80259695996806	7.70209201262192
	Η	4.67450263737563	5.82436960738467	8.38552979537713
3,	¹ GS	eq		
	С	3.63309876697858	7.71467978194245	8,53566820195441
	H	3.65254189990948	6.81412800452090	7.92985853747364
	С	3.51069284194698	7.66174958261916	9.94663115470897
	С	3.41524283204441	6.42458229463876	10.60707885599846
	Н	3.42149778987652	5.51520444778925	10.01718223520350
	С	3.32037684833601	6.38089353238027	11.97453355540540
	Н	3.24796130162703	5.42948571381678	12.48683517795394
	С	3.31342549877018	7.57333384120965	12.71157274751476
	Н	3.24079405216783	7.53562201856458	13.79224043399303
	С	3.38730665082665	8.79086034715328	12.07966756344297
	Н	3.37160819464174	9.69559008745233	12.67259869629269
	С	3.48471042895525	8.86382581162792	10.68180644616068
	С	3.54608595348536	10.10015277983287	9.94814035739757
	С	3.69002610948177	10.04276198191533	8.55734073155037
	С	3.75842990205322	11.21880664943414	7.76680230923542
	С	3.55396468802609	12.42392719669768	8.42032222915993
	Н	3.47284960548119	13.33745124031774	7.86059896963927
	С	3.41542174763666	12.50746562351333	9.81615886876051
	С	3.43531389879306	11.35398209618585	10.56320601373179
	Η	3.32409616214977	11.40374725245217	11.63486761987389
	С	3.25511744993096	13.87995072649693	10.45789656857912
	С	3.07604235598067	13.78246401403308	11.96885348526422
	Η	2.19842292311133	13.18798061694272	12.23383106239741
	Н	2.93317763247388	14.78223659297844	12.38455581720917
	Η	3.95050685950790	13.34207000277388	12.45396021925814
	С	4.50586786801505	14.71543580162782	10.16979631930683
	Н	4.41495901129889	15.70342959856343	10.62872597241744
	H	4.66104223843714	14.85562960397755	9.09784524829380
	H	5.39632789869339	14.23170868650318	10.57831476351681
	С	2.02063136022939	14.58091576702368	9.88530485841631
	H	1.11919893242125	13.99800907792804	10.08572082842508
	Н	2.09356996498515	14.73352977453187	8.80669980081277
	Н	1.90477457140694	15.56287447891175	10.35196792859567
	С	4.61167022730586	13.34243858211688	5.85619626710680
	H	3.69822421045143	13.92814/8499///6	5.98/10083310270
	H	5.1//9488120836/	13./98911/1584505	5.04/2/2/6343/81
	н	J.20094961154978	11 012400000101	6.//U8U426319/32 E.40764046706451
	C	4.30933135094586	11.91346266609191	5.49/64046/06451
	C	4.450/08//199868	11.62588568605235	4.13501/23282068
	H	4./0468166582903	12.4/16144/206/29	3.51201629834771
	C	4.342451/8685258	10.41158211068011	3.45643242348351

	С	4.53715254301178	10.38949829308176	1.97103532731668
	Н	5.32608669837600	9.67577760706419	1.72683962131623
	Н	4.79711832887111	11.36877143945495	1.57276164524153
	Н	3.62404028501575	10.02975214113190	1.49148439740682
	Cl	3.87661757612168	6.75958989446126	5.49338406787937
	Ν	3.73367539579605	8.83897401282464	7.88235093524387
	N	3.97207334567689	10.99611643105852	6.40102580302892
	0	4.11548822204841	9.27184989352942	3.96364712175399
	P+	3 90997692838556	9 03776832335864	5 92160695430702
	10	3.9099709203030	5.05770032333001	3.92100090100702
3,	T _{1.ea}			
,				
	С	3.64633453490927	7.66357541993194	8.55962202379141
	H	3.67489768436670	6.76088303214151	7.96427434196548
	С	3.52977587585130	7.63117659053399	9.95498500174650
	С	3.44812832185045	6.40325053407809	10.65118777913607
	Н	3.46189582154668	5.48087703163178	10.08195139395335
	С	3.35809246841266	6.38444666082757	12.01564716926493
	Н	3.29688969299489	5.43995076471670	12.54292235125921
	С	3.34065767212684	7.58941066036731	12.74146247813111
	Н	3.27301982579173	7.56702545045628	13.82257534110169
	С	3.39688169780955	8.79377897500719	12.08477808591018
	Н	3.37227792018761	9.70891189949718	12.66241963631475
	С	3.48579787352293	8.84795707840403	10.68507092389722
	С	3.52373179595987	10.07602619588273	9.93973447457845
	С	3.65714894093608	10.00118212147220	8.54508282810719
	С	3.73472246122678	11.18666707521935	7.74884483301695
	С	3.52575163689432	12.42981267890656	8.40128366793852
	Н	3.44297412171394	13.33091116765666	7.82115209810277
	С	3.38986897694086	12.51442734043064	9.77268259333766
	С	3.41736561577478	11.34190083227394	10.53121516222659
	Н	3.31352778149815	11.40254234722336	11.60308770914225
	С	3.22883133939180	13.88231530883054	10.42991130734524
	С	3.02649306667281	13.77126169263354	11.93770760203207
	Н	2.14300738726367	13.17798064101761	12.18545442288256
	Н	2.88167991845698	14.76839893126174	12.35930260322553
	Н	3.89181647497756	13.32434505196743	12.43310325406126
	С	4.49136491938770	14.70963744485384	10.17068493262820
	Н	4.40537170160893	15.69325882679111	10.64045670208501
	Н	4.66104512844386	14.85895471316782	9.10206412322530
	Н	5.37154908748880	14.21157361171552	10.58443857482558
	С	2.01029932327576	14.60217025859250	9.84835254638020
	Н	1.10039442838800	14.02628195939966	10.02983873534081
	Н	2.10095541656792	14.76415598152350	8.77233588630294
	Н	1.89713421643395	15.58092710858389	10.32280663895843
	С	4.74825147921624	13.32077129270150	5.90889048901052
	H	3.89995255274554	14.00061817035610	6.03748165536557
	Н	5.37364333588490	13.73919690471227	5.12131907071066
	Н	5.33084644316344	13.32715213102885	6.83091299723726
	С	4.33639275820717	11.93240018627725	5.50821296391323
	C	4.41847006468914	11.65329170473040	4.148992666665243
	н	4.68147413702893	12.50342248709294	3.53213577667494
	C	4 28284161612422	10 44951255463911	3 43891972767481
	C	4 46889859080442	10 42737294755976	1 95645094748444
	н	5 26160545856527	9 71935752919257	1 70260830397417
	н	4 72636722196988	11 40875077043276	1 56030476989092
	н	3 55808553396185	10 06829362819237	1 46996848111966
	T T	0.00000000000000000	エロ・ロロロム ノンロムロエブムン /	エ・ユレノノレレユレエエメジロロ

Cl	3.87638190137096	6.80846442789334	5.43121005248573
Ν	3.72163516593372	8.81278069081622	7.88578560345559
Ν	3.97494632353702	10.96810496841360	6.42548277618416
0	4.04461756741880	9.31277112062773	3.96396584209278
Pt	3.90940672070506	9.04156309833444	5.92412065385682
4, ¹ C	GS eq		
Pt	-0.96226595637032	7.13778197321001	6.38922367143552
Cl	-1.17296189762445	6.40908104337367	4.20586357465322
0	-2.30155231566984	8.52382717404969	5.92982684545189
F	2.80004853061459	8.21856758689376	12.05249516587666
Ν	0.28490977427578	5.70405891159499	6.93713385767357
F	2.22636226417775	6.30722830730120	12.86241132300655
F	4.08972568372262	6.49893005873586	11.79213385567979
N	-0.64114962422141	7.75067467172971	8.2/8354/04530/9
C	0.84980052383339	7 06373970877996	8.18039364343233
C	-1 43392681207611	8 64927497483204	8 86097026579113
C	0.55060675975264	4.62112489038430	6.26369495909006
H	0.06825991060969	4.53694010204444	5.29504818157652
С	1.10744276998996	7.39134843407339	10.03798531385136
Н	0.91868822926584	8.30858370608997	10.56596776334474
С	1.80727542670003	5.02731761027272	8.70115009482210
С	2.11215230626341	6.55195376823616	10.52136809014519
С	2.07184220745335	3.80402406995750	7.98533877206403
С	2.44674938923153	5.37545805573353	9.89652587260592
H	3.2214/858644831	4.74806904344612	10.31305685413813
U U	1 1000000000000000000000000000000000000	8.96260445500081 9.06529099612076	10.32/29060/2/193
н Н	2 28061396540341	9 42992817785873	10 64615909863772
Н	0.54573699184533	9.66890739776317	10.54352084360114
С	1.41041381213051	3.60815013643400	6.75593537486052
С	2.81042924578362	6.90130606447141	11.80587258600689
С	-2.79187774232458	9.28191675380265	6.81829672533018
С	1.59157544122375	2.41880083983065	6.03158180468520
Η	1.06382992519285	2.28920543884662	5.09353323920213
С	-2.43112251098611	9.34102057649488	8.16826403015225
H	-3.01090166281420	10.03193007896508	8.76402439922227
С	-3.8/889525894099	10.1/8525199/8855	6.3121928/984419
л ц	-3.45255512502755	10 7//8/690999119	7 10933831708830
H	-4.62158910692564	9.57182592357661	5.78991263158977
C	2.91304292719491	2.78751207904972	8.45689347140472
Н	3.42917050530854	2.89944339918419	9.40128695809309
С	2.41043974793522	1.43417609556905	6.52082350401325
Н	2.54558631723850	0.51164061308731	5.96988922062843
С	3.07283633343396	1.62525314818646	7.74065728660266
Н	3.71571954992625	0.84515578438016	8.13111616376953
4, T	l,eq		
Pt	-1.02873065408422	7.07947864640683	6.42895437666489
Cl	-1.29210639561141	6.38247141831623	4.27807792329788
0	-2.34937864969681	8.49024219177852	5.97147073826593
F	2.//060402443182	8.26/6994/519690	12.03612854116537
IN	∪.∠⊃9∠4∠6⊃≾9/9U≾	J.00400JU85598∠3	0.94U/LSS9388U38

F	2.23998838759950	6.34239673569277	12.84193291429871
F	4.08639966433209	6.56949500869028	11.75033646384569
Ν	-0.66597372817022	7.70066907218112	8.27542609133256
С	0.83034714470056	5.88540981993157	8.14690824811893
С	0.38943345520273	7.04864517355423	8.85681218838578
С	-1.44968811804705	8.64533150271019	8.87988583985351
С	0.52050838251212	4.54310450625611	6.25417559473256
Н	0.02219620921236	4.44017860971697	5.30091023007089
С	1.10035538441512	7.41349585780629	10.02551874717832
Н	0.90785194835214	8.34418522071257	10.52844578358764
С	1.79670084515581	5.01225490863512	8.68668156805863
С	2.09264495669769	6.59855286104675	10.50467622558524
С	2.06880383013080	3.78618279508212	7.97813402408787
С	2.42276885637776	5.38824868592598	9.87575325224026
Н	3.19588716308002	4.76778703764172	10.30592318695975
С	-1.40161703033403	8.88574312087699	10.35956840604453
Н	-1.25639173351523	7.95724168053235	10.91256913123283
Н	-2.34443866377429	9.32834001886106	10.67702928345111
Н	-0.61046272986985	9.58168296679023	10.65297932034614
С	1.39433684853244	3.57108628832989	6.74550583607305
С	2.79921704952203	6.95185067219460	11.77753142372482
С	-2.78208199695624	9.32593998788848	6.82276948699627
С	1.61518093045120	2.37053760262673	6.03264130555417
Н	1.08779074409255	2.21535887662342	5.09809958719719
С	-2.38147426364449	9.39286869688300	8.17027070961523
Н	-2.91608394029877	10.12669236761917	8.76000363781316
С	-3.81648156769844	10.27096847717369	6.30442190774370
Н	-3.35261459674420	10.95284460566830	5.58560299476068
Н	-4.27799942144244	10.85591284041680	7.09931158541122
Н	-4.58332832042963	9.70648974537762	5.76956791643698
С	2.93522220687856	2.79164970421365	8.45052360238460
Н	3.45168525859814	2.92465904427728	9.39268154069829
С	2.46746939903039	1.42074856731160	6.52088696359868
Н	2.63052406434206	0.50236470658321	5.96957261656162
С	3.13197940149072	1.63040663546990	7.74278335425634
Н	3.79901300119964	0.87121878140100	8.13241185848802

REFERENCES

- Pan, L.; Hu, B.; Zhu, X.; Chen, X.; Shang, J.; Tan, H.; Xue, W.; Zhu, Y.; Liu, G.; Li, R.-W. Role of Oxadiazole Moiety in Different D–A Polyazothines and Related Resistive Switching Properties. J. Mater. Chem. C 2013, 1, 4556.
- (2) Neese, F. The ORCA Program System. WIREs Comput. Mol. Sci. 2012, 2, 73–78.
- (3) Neese, F. Software Update: The ORCA Program System, Version 4.0. WIREs Comput. Mol. Sci. 2018, 8, e1327.