Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2021

Supporting information

Highly selective ethenolysis with acyclic-aminooxycarbene ruthenium catalysts

Seunghwan Byun,^{1,2} Da-Ae Park,¹ Seyong Kim,¹ Sunghyun Kim,¹ Ji Yeon Ryu,³ Junseong

Lee³ and Sukwon Hong^{1,2,4*}

¹Department of Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-gwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea

²Grubbs Center for Polymers and Catalysis, Gwangju Institute of Science and Technology

(GIST), 123 Cheomdan-gwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea

³Department of Chemistry, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea

⁴School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-gwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea

Table of Contents

1. General ·····S2
2. Experimental details ····································
3. Electronic properties of ligands by TEP and ⁷⁷ Se NMR Study
4. Ethenolysis of methyl oleate and cis-cycloocteneS11
5. X-ray Analysis for Compounds
6. ¹ H, ¹³ C, and ⁷⁷ Se NMR spectra S17
7. Computational Results
8. References ······S36

1. General Remarks

All the reactions were conducted in flame-dried glassware under an argon atmosphere using standard Schlenk techniques or in a nitrogen-filled Vacuum Atmospheres glovebox with a high capacity recirculator (<1 ppm of O₂). NMR spectra were recorded using a JEOL spectrometer, operating at 400 MHz for ¹H NMR, at 101 MHz for ¹³C NMR, at 376 MHz for ¹⁹F NMR and 76 MHz for ⁷⁷Se NMR. All chemical shifts for ¹H, ¹³C NMR, and ¹⁹F NMR spectroscopy were referenced to residual signals from CDCl₃ (¹H) 7.26 ppm and (¹³C) 77.16 ppm, CD₂Cl₂ (¹H) 5.32 ppm and (¹³C) 53.84 ppm, and C₆D₆ (¹H) 7.16 ppm and (¹³C) 128.06 ppm. Gas Chromatographic analyses were conducted using an Agilent 7890 GC. Elemental analysis were carried out using a UNICUBE Elementar Analyser at Gwangju Institute of Science and Technology (GIST) Central Research Facilities. High-resolution mass spectra (HR-MS) were obtained at the Korea Basic Science Institute (KBSI) in Daegu, Korea. Analytical thin layer chromatography (TLC) was performed with Merck pre-coated silica gel 60 Å (F254) glass plates and visualization on TLC was achieved by UV light. Flash chromatography was performed with 230-400 Mesh 60 Å Silica Gel purchased from Merck Inc. Yield refers to isolated yield of analytically pure material unless otherwise noted. THF, CH₂Cl₂ and Et₂O were dried under a positive pressure of dry nitrogen by a J. C. Meyer Solvent Purification System prior to use. Hexane, benzene, toluene, DMF, DMSO and acetonitrile were dried over calcium hydride (CaH₂), distilled atmosphere prior to use and stored over 4 Å molecular sieves. CDCl₃, CD₂Cl₂, and C₆D₆ were dried over CaH₂ and distilled into a Schlenk tube, freeze/pump/thawed 3 times and stored over 4 Å molecular sieves. Unless specified, all the other chemicals were purchased from Sigma-Aldrich Co., Acros Organics, TCI, Alfa Aesar and were used as received without further purification.

2. Experimental details

S1

2.1. Preparation of 2-(tert-butyl)-6-propylphenol

2-allyl-6-(*tert*-butyl)phenol (1 equiv.)¹ was dissolved in EtOH. Pd/C (10 wt%) was added to this solution. The reaction was purged with hydrogen. The mixture was stirred for 24h at room temperature. The mixture was filtered through a sintered funnel. The solvent was removed in vacuo to leave a light yellow oil as the desired product in quantitative yield. ¹H-NMR (400 MHz, CDCl₃) δ 7.16 (1H, dd, J = 7.8, 1.7 Hz, ArH), 7.00 (1H, dd, J = 7.5, 1.7 Hz, ArH), 6.82 (1H, t, J = 7.6 Hz, ArH), 4.86 (1H, s, OH), 2.61 – 2.51 $(2H, m, CH_2), 1.73 - 1.61 (2H, m, CH_2), 1.43 (9H, s, (CH_3)_3), 1.02 (3H, t, J = 7.3 Hz, CH3).$ ¹³C NMR (101 MHz, CDCl₃) δ 152.4, 135.8, 127.7, 125.0, 120.0, 34.6, 32.3, 29.9, 22.9, 14.2. HRMS (EI): Calcd. for C₁₃H₂₀O [M]⁺:191.1514; found: 192.1511.

2.2. Preparation of AAOC salts²

General procedure

(COCl)₂ (1.5 equiv.) was added dropwise to a solution of formamide 2 (0.95 equiv.) in CH₂Cl₂ at -78 °C. The reaction mixture was stirred for 1 h at room temperature. After evaporation of all the volatiles by vacuum, CH₂Cl₂ was added. A solution of aryloxysilane 1 in CH₂Cl₂ was added dropwise to the reaction mixture of 2 at -78 °C. After stirring for 3 h at room temperature, the reaction solution was concentrated to 2 mL and the precipitated solid was washed with additional hexanes. The chloride salt (1 eq) was added to a solution of KPF_6 (1.1 eq) in a minimal amount of H₂O. The resulting precipitate was extracted with CH₂Cl₂ and the organic layers were combined and dried over Na₂SO₄, filtered, and concentrated. The resulting solid was recrystallized from hexane.

3a

Following the GP 2.2, 3a (82%, 1.6 g) was obtained from N,Ndiisopropylformamide (4.5 mmol, 0.65 mL), (COCl)₂ (6.75 mmol, 0.84 mL), (2,6-diisopropylphenoxy)trimethylsilane (5 mmol) and CH₂Cl₂ (10

mL). The chloride salt (1 eq) was added to a solution of KPF_6 (1.1 eq) in a minimal amount of H₂O. The resulting precipitate was extracted with CH₂Cl₂ and the organic layers were combined and dried over Na₂SO₄, filtered, and concentrated. The resulting solid was recrystallized from hexane. ¹H NMR (CDCl₃, 400 MHz), δ (ppm): 8.29 (1H, s, NCHO), 7.33 (1H, t, J = 7.6 Hz, ArH), 7.23 (2H, t, J = 8.0 Hz, ArH), 4.43-4.31 (2H, m, NCH), 2.85-2.75

(2H, m, ArC*H*), 1.62 (6H, d, J = 5.7 Hz, CHC*H*₃), 1.47 (6H, d, J = 5.7 Hz, CHC*H*₃), 1.24 (12H, d, J = 6.9 Hz, CHC*H*₃). ¹³C NMR (CDCl₃, 101 MHz), δ (ppm): 165.3, 149.7, 139.1, 129.3, 125.3, 58.5, 52.6, 27.7, 23.2, 20.8, 19.7. HRMS (FAB): Calcd. for C₁₉H₃₂NO [M–PF₆]⁺:290.2484; found: 290.2484. Anal. Calcd (%) for C₁₉H₃₂F₆NOP: C, 52.41; H, 7.41; N, 3.22; found: C, 52.33; H, 7.50; N, 3.32.

3b•Cl

3b

3c•Cl

Following the **GP 2.2**, **3b**•**Cl** (85%, 748 mg) was obtained from piperidine-1-carbaldehyde (2.85 mmol, 322 mg), (COCl)₂ 4 mmol, 0.34 mL), (2,6-diisopropylphenoxy)trimethylsilane (3 mmol) and CH₂Cl₂ (10

mL). ¹H NMR (CDCl₃, 400 MHz), δ (ppm): 10.39 (1H, s, NCHO), 7.29 (1H, t, J = 7.6 Hz, Ar*H*), 7.20 (2H, d, J = 7.2 Hz, Ar*H*), 4.46 (2H, t, J = 5.3 Hz, C*H*₂), 4.01 (2H, t, J = 5.3 Hz, C*H*₂), 3.04-2.87 (2H, m, C*H*), 1.97-1.80 (m, 7H), 1.26 (12H, d, J = 6.9 Hz, C*H*₃). ¹³C NMR (CDCl₃, 101 MHz), δ (ppm): 165.1, 148.7, 139.2, 128.9, 125.1, 52.5, 46.9, 27.7, 26.5, 26.0, 23.1, 22.8. HRMS (FAB): Calcd. for C₁₈H₂₈NO [M–Cl]⁺: 274.2165; found 274.2170.

3b (70 mg, 32%) was obtained. The chloride salt **3b**•**Cl** (160 mg, 1 eq) was added to a solution of KPF₆ (95 mg, 1.1 eq) in a minimal amount of H₂O. The resulting precipitate was extracted with CH₂Cl₂ and the organic

layers were combined and dried over Na₂SO₄, filtered, and concentrated. The resulting solid was recrystallized from hexane. ¹H NMR (CDCl₃, 400 MHz), δ (ppm): 8.32 (1H, s, NCHO), 7.33 (1H, dd, J = 8.2, 7.3 Hz, Ar*H*), 7.21 (2H, d, J = 7.7 Hz, Ar*H*), 4.12 – 3.95 (4H, m, NCH₂), 2.89 (2H, hept, J = 6.8 Hz, C*H*), 1.99 – 1.78 (6H, m, CH₂), 1.23 (12H, d, J = 6.8 Hz, CH₃). ¹³C NMR (CDCl₃, 101 MHz), δ (ppm): 162.8, 149.0, 139.3, 129.2, 125.2, 53.2, 47.3, 27.5, 26.4, 25.9, 22.9, 22.8. Anal. Calcd (%) for C₁₈H₂₈F₆NOP: C, 51.55; H, 6.73; N, 3.34; found: C, 51.69; H, 7.06; N, 3.40.

⊖ i-Pr Cl

Following the **GP 2.2**, **3c**•**Cl** (91%, 1.54 g) was obtained from pyrrolidine-1-carbaldehyde (5.7 mmol, 565 mg), (COCl)₂ (8.6 mmol, 0.73

mL), (2,6-diisopropylphenoxy)trimethylsilane (6 mmol) and CH_2Cl_2 (20 mL). ¹H NMR (CDCl₃, 400 MHz), δ (ppm): 10.27 (1H, s, NCHO), 7.29 (1H, t, J = 7.8 Hz, ArH), 7.19 (2H, d, J = 7.6 Hz, ArH), 4.58 (2H, t, J = 6.1 Hz, CH₂), 3.95 (2H, t, J = 6.1 Hz, CH), 3.15-2.93 (2H, m, CH), 2.26-2.19 (4H, m, CH₂), 1.25 (12H, d, J = 6.9 Hz, CH₃). ¹³C NMR (CDCl₃, 101 MHz),

δ (ppm): 164.9, 149.1, 139.3, 128.8, 125.0, 52.8, 49.2, 27.6, 24.9, 24.0, 23.2. HRMS (FAB): Calcd. for $C_{17}H_{26}NO$ [M–Cl]⁺: 260.2009; found 260.2010.

3c

3*d*

3c (70 mg, 51%) was obtained. The chloride salt **3c**•Cl (100 mg, 1 eq) was added to a solution of KPF₆ (62 mg, 1.1 eq) in a minimal amount of H₂O.

The resulting precipitate was extracted with CH_2Cl_2 and the organic layers were combined and dried over Na₂SO₄, filtered, and concentrated. The resulting solid was recrystallized from hexane. ¹H NMR (CDCl₃, 400 MHz), δ (ppm): 8.41 (1H, s, NCHO), 7.36 – 7.28 (1H, m, Ar*H*), 7.21 (2H, d, J = 7.7 Hz, Ar*H*), 4.20 (2H, t, J = 6.7 Hz, NC*H*₂), 3.99 (2H, t, J = 6.9 Hz, NC*H*₂), 2.91 (2H, hept, J = 6.8 Hz, CC*H*), 2.34 – 2.14 (4H, m, CH₂), 1.21 (12H, d, J = 6.8 Hz, C*H*₃). ¹³C NMR (CDCl₃, 101 MHz), δ (ppm): 163.0, 149.3, 139.5, 129.1, 125.1, 77.4, 77.1, 76.8, 52.6, 49.6, 27.4, 24.6, 23.9, 23.0. Anal. Calcd (%) for C₁₇H₂₆F₆NOP: C, 50.37; H, 6.47; N, 3.46; found: C, 50.62; H, 5.98; N, 3.56.

⊖ t-Bu OTf

A formamide (5 mmol, 496 mg) was dissolved in CH_2Cl_2 (0.02 M), and Tf_2O (5 mmol, 0.84 mL) was added carefully dropwise at -78 °C. The

solution was warmed to room temperature and stirred for 1 h. 2-(*tert*-butyl)-6-propylphenol (5 mmol, 961 mg) and Et₃N (5.5 mmol, 0.77 mL) in CH₂Cl₂ (10 mL) were added dropwise to the solution at – 78 °C. The reaction mixture was stirred for 4 h at room temperature. Product was purified by passing a short plug of silica and this residue was triturated by the additional hexane to precipitate a solid (52%, 1.11 g). ¹H NMR (CDCl₃, 400 MHz), δ (ppm): δ 9.19 (1H, s, NCHO), 7.30-7.17 (2H, m, ArH), 4.35 (2H, t, J = 6.5 Hz, CH₂), 3.99 (2H, t, J = 6.7 Hz, CH₂), 3.18-3.11 (3H, m, CH₂), 2.50 (2H, t, J = 7.4 Hz, CH₂), 2.25 (4H, dq, J = 28.6, 6.7 Hz, CH₂), 1.61 (2H, td, J = 14.9, 7.4 Hz, CH₂), 1.36-1.33 (12H, m, CH₃), 0.90 (3H, t, J = 7.2 Hz, CH₃). ¹³C NMR (CD₂Cl₂, 101 MHz), δ (ppm): 164.9, 151.7, 140.8, 133.8, 129.4, 128.4, 126.2, 49.8, 46.0, 34.8, 32.0, 30.7, 24.9, 24.1, 22.9, 13.5. HRMS (FAB): Calcd. for C₁₈H₂₈NO [M–OTf]⁺: 274.2165; found 274.2170. Anal. Calcd (%) for C₁₉H₂₈F₃NO₄S: C, 53.89; H, 6.66; N, 3.31; found: C, 54.07; H, 6.40; N, 3.40.

2.3. Synthesis of AAOC-ruthenium catalysts

General procedure

To AAOC salt (2 equiv.) and KHMDS (2.2 equiv.), THF was added and stirred at -78 °C for 0.5 h. 1G Grubbs-Hoveyda catalyst (1 equiv.) in benzene was added and stirred for 2 h. The solution was concentrated. The crude mixture was dissolved in CH₂Cl₂. Amberlyst 15 resin (4 eq.) was added. The reaction was heated at 50 °C. The mixture was filtered over a pad of Celite, eluted with CH₂Cl₂ and the filtrate was concentrated. Product was purified silica gel chromatography.

4a

Following the **GP 2.3**, **4a** (70%, 43 mg) was obtained from **3a** (0.2 mmol, 87 mg), KHMDS (0.22 mmol, 44 mg), **HG1** (0.1 mmol, 60 mg) and THF and benzene (2 mL). ¹H NMR (CD₂Cl₂, 400 MHz), δ (ppm): 15.64 (1H, s, Ru=C*H*), 7.56-7.52 (1H, m, Ar*H*), 7.48 (1H, t, J = 7.6 Hz, Ar*H*), 7.33

(2H, d, J = 8.0 Hz, Ar*H*), 6.94 (1H, d, J = 8.4 Hz, Ar*H*), 6.89 (2H, t, J = 2.9 Hz, Ar*H*), 5.25 (1H, m, J = 6.3 Hz, C*H*), 5.13-5.04 (1H, m, C*H*), 3.79-3.69 (1H, m, C*H*), 3.19-3.09 (2H, m, C*H*), 1.67 (12H, d, J = 6.1 Hz, C*H*₃), 1.55 (6H, d, J = 6.9 Hz, C*H*₃), 1.12 (6H, d, J = 6.7 Hz, C*H*₃), 0.86 (6H, d, J = 6.9 Hz, C*H*₃). ¹³C NMR (CD₂Cl₂, 101 MHz), δ (ppm): 223.6, 152.1, 151.4, 144.0, 142.5, 130.4, 127.2, 124.6, 122.9, 122.5, 112.9, 74.9, 56.8, 50.3, 26.4, 25.4, 22.4, 22.0, 21.8, 20.1. HRMS (FAB): Calcd. for C₂₉H₄₃Cl₂NO₂Ru [M]⁺: 609.1709; found 609.1717. Anal. Calcd (%) for C₂₉H₄₃Cl₂NO₂Ru: C, 57.14; H, 7.11; N, 2.30; found: C, 56.97; H, 6.81; N, 2.19.

4b

Following the **GP 2.3**, **4b** (38%, 22 mg) was obtained from **3b** (0.4 mmol, 124 mg), KHMDS (0.44 mmol, 88 mg), **HG1** (0.1 mmol, 60 mg) and THF and benzene (2 mL). ¹H NMR (CD₂Cl₂, 400 MHz), δ (ppm): 15.67 (1H, s, Ru=C*H*), 7.56-7.52 (1H, m, Ar*H*), 7.45 (1H, t, J = 7.6 Hz, Ar*H*), 7.30 (2H,

d, J = 7.6 Hz, Ar*H*), 6.96-6.87 (3H, m, Ar*H*), 5.16-5.07 (1H, m, OC*H*), 4.51 (2H, t, J = 5.5 Hz, C*H*₂), 4.01 (2H, t, J = 5.5 Hz, C*H*₂), 3.24-3.13 (2H, m, C*H*₂), 2.13-2.07 (2H, m, C*H*₂), 1.88-1.82 (2H, m, C*H*₂), 1.74-1.68 (8H, m, C*H*₂, and C*H*₃), 1.11 (6H, d, J = 6.9 Hz, C*H*₃), 0.95 (6H, d, J = 6.9 Hz, C*H*₃). ¹³C NMR (CD₂Cl₂, 101 MHz), δ (ppm): 220.0, 152.1, 152.0, 143.6, 141.8, 130.4, 127.0, 124.1, 122.7, 122.5, 112.9, 75.2, 47.7, 26.8, 26.3, 24.3, 24.1, 21.9, 21.1. HRMS (FAB): Calcd. for C₂₈H₃₉Cl₂NO₂Ru [M]⁺: 593.1396; found 593.1405. Anal. Calcd (%) for C₂₈H₃₉Cl₂NO₂Ru: C, 56.66; H, 6.62; N, 2.36; found: C, 56.96; H, 6.17; N, 2.22.

N O CI I-Pr Ru CI I-Pr 4c

4d

Following the **GP 2.3**, **4c** (51%, 30 mg) was obtained from **3c** (0.4 mmol, 118 mg), KHMDS (0.44 mmol, 88 mg), **HG1** (0.1 mmol, 60 mg) and THF and benzene (2 mL). ¹H NMR (CD₂Cl₂, 400 MHz), δ (ppm): 15.70 (1H, s, Ru=CH), 7.56-7.51 (1H, m, Ar*H*), 7.46 (1H, t, J = 7.8 Hz, Ar*H*), 7.30 (2H,

d, J = 7.6 Hz, Ar*H*), 6.98-6.87 (3H, m, Ar*H*), 5.20-5.10 (1H, m, OC*H*), 4.81 (2H, t, J = 6.7 Hz, C*H*₂), 4.04 (2H, t, J = 7.2 Hz, C*H*₂), 3.24-3.13 (2H, m, C*H*₂), 2.24-2.18 (2H, m, C*H*₂), 2.09-2.02 (2H, m, C*H*₂), 1.72 (6H, d, J = 6.1 Hz, C*H*₃), 1.12 (6H, d, J = 7.2 Hz, C*H*₃), 0.93 (6H, d, J = 6.5 Hz, C*H*₃). ¹³C NMR (CD₂Cl₂, 101 MHz), δ (ppm): 221.1, 152.3, 152.2, 143.5, 141.8, 130.2, 127.0, 124.1, 122.4, 112.8, 75.4, 50.5, 50.3, 26.8, 26.1, 24.5, 23.8, 21.9, 21.2. HRMS (FAB): Calcd. for C₂₇H₃₇Cl₂NO₂Ru [M]⁺: 579.1239; found 579.1247. Anal. Calcd (%) for C₂₇H₃₇Cl₂NO₂Ru: C, 55.95; H, 6.44; N, 2.42; found: C, 56.34; H, 5.90; N, 2.31.

Following the **GP 2.3**, **4d** (37%, 195 mg) was obtained from **3d** (0.6 mmol, 254 mg), KHMDS (0.66 mmol, 180 mg), **HG1** (0.1 mmol, 180 mg) and THF and benzene (10 mL). ¹H NMR (CD₂Cl₂, 400 MHz), δ (ppm): 15.90 (1H, s, Ru=C*H*), 7.55-7.47 (2H, m, Ar*H*), 7.33 (1H, t, J = 7.6 Hz, Ar*H*),

7.09 (1H, dd, J = 7.4, 1.3 Hz, Ar*H*), 6.99-6.92 (3H, m, Ar*H*), 5.21-5.12 (1H, m, OC*H*), 4.92-4.80 (2H, m, C*H*₂), 3.99 (2H, ddd, J = 27.9, 12.7, 7.2 Hz, C*H*₂), 2.66-2.58 (1H, m, C*H*₂), 2.32-1.99 (5H, m, C*H*₂, C*H*₂ C*H*₂), 1.65-1.81 (6H, m, C*H*₃), 1.51-1.39 (2H, m, C*H*₂), 1.30 (9H, s, (C*H*₃)₃), 0.82 (3H, t, J = 7.2 Hz, C*H*₃). ¹³C NMR (CD₂Cl₂, 101 MHz), δ (ppm): 221.8, 154.1, 152.6, 143.1, 142.1, 137.3, 130.2, 128.5, 126.3, 125.9, 122.5, 122.4, 112.9, 75.4, 51.0, 50.7, 35.6, 33.3, 31.6, 25.9, 24.1, 23.6, 21.9, 21.8, 13.6. HRMS (FAB): Calcd. for C₂₈H₃₉Cl₂NO₂Ru [M]⁺: 593.1396; found 593.1404. Anal. Calcd (%) for C₂₈H₃₉Cl₂NO₂Ru: C, 56.66; H, 6.62; N, 2.36; found: C, 56.90; H, 6.46; N, 2.40.

2.4. Preparation of Rh complexes

5a

5b

5c

[Rh(COD)(**3a**)Cl] **5c** (0.025 mmol, 13 mg) was treated with carbon monoxide in CH_2Cl_2 (2 mL). The mixture was stirred for 12 h at room temperature. The solvent was removed under reduced pressure. The

volatiles were further removed under high vacuum. The complex **5a** was washed with cold hexane and obtained quantitatively. ¹H NMR (400 MHz, CD₂Cl₂), δ 7.27 (1H, t, J = 7.8 Hz, Ar*H*), 7.19 (2H, d, J = 7.3 Hz, Ar*H*), 5.79-5.69 (1H, m, C*H*), 3.84-3.74 (1H, m, C*H*), 3.38-3.28 (1H, m, C*H*), 2.99-2.89 (1H, m, C*H*), 1.56 (6H, dd, J = 10.1, 6.9 Hz, C*H*₃), 1.36 (9H, q, J = 6.6 Hz, C*H*₃), 1.25 (3H, d, J = 6.9 Hz, C*H*₃), 1.07 (3H, d, J = 6.9 Hz, C*H*₃), 0.99 (3H, d, J = 6.9 Hz, C*H*₃). ¹³C NMR (101 MHz, CD₂Cl₂), δ 219.7, 186.0, 182.6, 150.3, 142.2, 140.6, 127.3, 123.9, 123.2, 59.0, 49.9, 27.6, 26.5, 26.1, 21.3, 20.7, 20.2, 19.9, 19.0. IR (ATR): 2078.6 (CO) 1984.3 (CO). HRMS (FAB): Calcd. for C₂₁H₃₁NO₃Rh [M–Cl]⁺: 448.1353; found 448.1361.

[Rh(COD)(3a)Cl] 5d (0.04 mmol, 20 mg) was treated with carbon monoxide in CH_2Cl_2 (2 mL). The mixture was stirred for 12 h at room temperature. The solvent was removed under reduced pressure. The

volatiles were further removed under high vacuum. The complex **5b** was used without further purification and obtained quantitatively. Due to the presence of conformational and rotational isomers, the ¹H, ¹³C spectra of **5b** was highly complex, which precluded further assignment.

IR (ATR): 2074.9 (CO) 1993.1 (CO).

AAOC **3a** salt (0.5 mmol, 1 equiv), KHMDS (0.6 mmol, 1.1 equiv) and THF (5 mL) were mixed and stirred at -78 °C for 0.5 h. [RhCl(COD)]₂ (0.25 mmol, 0.5 equiv) was added and the reaction mixture was stirred

for 12 h at room temperature. The solvent was removed under reduced pressure. Product was purified by silica gel column chromatography to afford the desired product [Rh(COD)(**3a**)Cl] **5a** as a yellow solid (95 mg, 35%). ¹H-NMR (400 MHz, CD₂Cl₂), δ 7.34-7.26 (2H, m, Ar*H*), 7.15 (1H, dd, J = 7.2, 1.9 Hz, Ar*H*), 6.50-6.40 (1H, m, C*H*), 4.61 (1H, t, J = 7.6 Hz, C*H*), 4.49 (1H, q, J = 8.0 Hz, C*H*), 3.81-3.58 (3H, m, CH), 2.82-2.68 (2H, m, C*H*₂), 2.49-2.38 (1H, m, C*H*), 2.01 (1H, q, J = 7.6 Hz, C*H*), 1.90-1.77 (2H, m, C*H*₂), 1.70-1.59 (1H, m, C*H*), 1.50-1.39 (12H, m, C*H*₃), 1.32 (3H, d, J = 6.5 Hz, C*H*₃), 1.24 (6H, d, J = 6.9 Hz, C*H*₃), 1.05 (3H, d, J = 6.9 Hz, C*H*₃), 0.95 (3H, d, J = 6.9 Hz, C*H*₃). ¹³C NMR (101 MHz, CDCl₂), δ 228.4, 150.2,

143.0, 140.7, 126.6, 124.2, 122.4, 99.6, 96.4, 69.5, 65.5, 58.2, 49.2, 35.6, 30.3, 28.8, 27.6, 27.3, 26.8, 26.3, 25.7, 21.7, 21.1, 20.4, 19.7. HRMS (FAB): Calcd. for C₂₇H₄₃ClNORh [M]⁺: 535.2083; found 535.2090.

5d

AAOC **3c** salt (0.4 mmol, 1 equiv, 118 mg), KHMDS (0.48 mmol, 1.2 equiv, 96 mg) and THF (4 mL) were mixed and stirred at -78 °C for 0.5 h. [RhCl(COD)]₂ (0.2 mmol, 0.5 equiv, 98 mg) was added and the reaction

mixture was stirred for 12 h at room temperature. The solvent was removed under reduced pressure. Product was purified by silica gel column chromatography to afford the desired product [Rh(COD)(**3c**)Cl] **5d** as a yellow solid (127 mg, 62%). ¹H-NMR (400 MHz, CD₂Cl₂), δ 7.32 (1H, dd, J = 7.7, 1.4 Hz, Ar*H*), 7.24 (1H, t, J = 7.6 Hz, Ar*H*), 7.07 (1H, dd, J = 7.6, 1.4 Hz, Ar*H*), 4.74 (3H, m, C*H*, CH₂), 4.27 (1H, J = 12.1, 6.5 Hz, C*H*), 4.10 – 3.93 (1H, m, C*H*), 3.75 (1H, m, C*H*), 3.64 – 3.46 (2H, m, C*H*₂), 2.59 (1H, m, C*H*₂), 2.54 – 2.36 (2H, m, C*H*₂), 2.13 – 1.91 (6H, m, C*H*₂), 1.90 – 1.73 (1H, m), 1.58 – 1.43 (3H, m, C*H*₃), 1.39 (3H, d, J = 6.7 Hz, C*H*₃), 1.33 – 1.22 (2H, m, C*H*₂), 1.22 – 1.12 (3H, d, J = 6.9 Hz, C*H*₃), 1.07 (3H, d, J = 6.8 Hz, C*H*₃), 1.00 (3H, d, J = 6.9 Hz, C*H*₃). ¹³C NMR (101 MHz, CDCl₂), δ 225.0, 224.8 (due to the presence of conformational and rotational isomers), 150.7, 142.3, 140.4, 126.4, 124.4, 122.2, 100.1, 99.1, 69.3, 66.0, 52.7, 48.0, 35.0, 30.1, 29.6, 28.0, 7.1, 26.5, 25.0, 24.9, 21.8, 20.4 Due to the presence of conformational and rotational isomers, the ¹³C NMR spectra of rhodium complex was highly complex, which precluded further assignment.

2.5. Preparation of Se adduct

6a

To AAOC **3a** salt (0.2 mmol, 87 mg), KHMDS (0.24 mmol, 48 mg) and selenium (0.4 mmol, 32 mg) was added THF (2 mL) at -78 °C. The

mixture was warmed to rt and then stirred 12 h. The volatiles were removed under reduced pressure and Se adducts were purified by column chromatography afforded the desired product as a yellow solid (74 mg, 100%). ¹H NMR (400 MHz, CDCl₃), δ 7.27 (1H, dd, J = 8.6, 7.1 Hz, Ar*H*), 7.18 (2H, d, J = 7.6 Hz, Ar*H*), 5.84 (1H, m, C*H*), 3.88 (1H, m, C*H*), 2.96-2.86 (2H, m, C*H*), 1.56 (6H, t, J = 6.7 Hz, C*H*₃), 1.31 (12H, dd, J = 6.7, 2.5 Hz, C*H*₃), 1.17 (6H, d, J = 6.9 Hz, C*H*₃). ¹³C NMR (101 MHz, CDCl₃), δ 191.6, 149.2, 141.4, 126.6, 124.2, 58.4, 49.1, 27.4, 24.9, 23.0, 21.5, 19.5. ⁷⁷Se NMR (76 MHz, CDCl₃), δ 284.4. HRMS (FAB): Calcd. for

C₁₉H₃₂NOSe [M+H]⁺: 370.1649; found 370.1645. Anal. Calcd (%) for C₁₉H₃₁NOSe: C, 61.94; H, 8.48; N, 3.80; found: C, 62.31; H, 8.28; N, 3.62.

 $\begin{array}{c} & & 6\mathbf{b} \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ &$

mixture was warmed to rt and then stirred 12 h. The volatiles were removed under reduced pressure and Se adducts were purified by column chromatography afforded the desired product as a yellow solid (32 mg, 47%). ¹H NMR (400 MHz, CDCl₃), δ 7.25 (2H, dd, J = 8.5, 6.7 Hz, Ar*H*), 7.20 – 7.13 (3H, m, Ar*H*), 3.89 (2H, t, J = 6.9 Hz, C*H*₂), 3.76 (2H, t, J = 6.9 Hz, C*H*₂), 2.95 (2H, hept, J = 6.9 Hz, C*H*), 2.19 – 2.10 (3H, m, C*H*), 2.09 – 2.00 (3H, m, C*H*₂), 1.29 (6H, d, J = 6.9 Hz, C*H*₃), 1.15 (6H, d, J = 6.9 Hz, C*H*₃). ¹³C NMR (101 MHz, CDCl₃), δ 187.1, 149.5, 141.0, 126.7, 123.9, 77.4, 77.1, 76.8, 55.0, 49.0, 27.7, 26.1, 24.6, 24.5, 22.2. ⁷⁷Se NMR (76 MHz, CDCl₃), δ 286.3. Anal. Calcd (%) for C₁₇H₂₅NOSe: C, 60.35; H, 7.45; N, 4.14; found: C, 60.83; H, 7.64; N, 4.00.

3. Electronic Properties of Ligands by TEP and 77Se NMR Study.

Figure S1. Tolman Electronic Parameters (TEP) and ⁷⁷Se NMR Shifts of Selected carbenes ^aThe IR spectra of complexes were measured in CH_2Cl_2 , and TEP values were calculated from the symmetric and antisymmetric CO stretching frequencies of the corresponding [Rh(carbene)(CO)₂Cl] complexes, using the equation TEP = 0.8001 × vav(CO) + 420cm⁻¹. ^b ⁷⁷Se-NMR spectra in CDCl₃.

4.1. Ethenolysis of Methyl Oleate using AAOC-Ru Catalysts

Reactions were setup analogously to those described in the literature.³ A vial was charged with (Ru complex and toluene) to prepare a stock solution (0.0005 M). A reactor was charged with methyl oleate (1 mmol, 1 equiv.), tridecane (10 - 20 mg) as an internal standard and ruthenium catalyst (ppm) in a glovebox. The reactor was then purged three times with ethylene and pressurized to 150 psi. The mixture was stirred at 40 °C for 3 h. The reaction was cooled to rt, quenched with 0.1 mL of a 3 M solution of ethyl vinyl ether in MC, and diluted with hexane. The samples were analyzed by GC.

4.2. Ethenolysis of cis-Cyclooctene using AAOC-Ru Catalysts

Reactions were setup analogously to those described in the literature.^{3b} A vial was charged with Ru catalyst and toluene to prepare a stock solution (0.0005 M). A reactor was charged with *cis*-cyclooctene (1 equiv.), tridecane (30 - 50 mg) as an internal standard and a solution of the catalyst in a glovebox. The vessel was then purged three times with ethylene and pressurized to 300 psi. The mixture was stirred at 30 °C for 5 h. The reaction was cooled to rt, quenched

with 0.1 mL of a 3 M solution of ethyl vinyl ether in MC, and diluted with hexane. The samples were analyzed by GC.

5. Crystallographic Data

Reflection data for **4a** and **4d** were collected on a Bruker APEX-II CCD-based diffractometer with graphite-monochromated MoK α radiation ($\lambda = 0.7107$ Å). The hemisphere of reflection data were collected as ω scan frames with 0.5°/frame and an exposure time of 10s/frame. Cell parameters were determined and refined by the SMART program. Data reduction was performed using SAINT software. The data were corrected for Lorentz and polarization effects. An empirical absorption correction was applied using the SADABS program. The structures of the compounds were solved by direct methods and refined by full matrix least-squares methods using the SHELXTL program package with anisotropic thermal parameters for all non-hydrogen atoms. Table S2. X-ray crystallography data for 4a

Identification code	4a	
CCDC number	1902240	
Empirical formula	C29 H43 Cl2 N O2 Ru	
Formula weight	609.61	
Temperature	296.15 T (K)	
Wavelength	0.71073	
Crystal system	orthorhombic	
Space group	Pbcn	
Unit cell dimensions	a = 34.7471(5)Å	α= 90°
	b = 11.0709(2) Å	β= 90°
	c = 15.4792(2)Å	γ=90°
Volume	5954.56(16)Å ³	

Ζ	8
Density (calculated)	1.360 g cm ⁻³
Absorption coefficient	0.731
F(000)	2544
θ range for data collection	2.336 to 25.578°
Index ranges	$-42 \le h \le 42, -13 \le k \le 12, -18 \le l \le 18$
Reflections collected	74178
Independent reflections	4984 [R(int) = 0.0299]
Completeness to $\theta = 25.24^{\circ}$	99.9%
Data / restraints /parameters	5562/0/326
Goodness-of-fit on F ²	1.070
Final R indices $[I > 2\sigma((I))]$	$R_1 = 0.0219$, $wR_2 = 0.0474$
R indices (all data)	$R_1 = 0.0264$, $wR_2 = 0.0490$
Largest diff. peak and hole	

Identification code	4d	
CCDC number	1987567	
Empirical formula	C28 H39 Cl2 N O2 Ru	
Formula weight	593.57	
Temperature	296(2) T (K)	
Wavelength	0.71073	
Crystal system	monoclinic	
Space group	P 1 21/n 1	
Unit cell dimensions	a = 11.4974(2)Å	$\alpha = 90^{\circ}$
	b = 22.8652(3)Å	$\beta = 111.0221 \ (7)^{\circ}$
	c = 11.6035(2)Å	$\gamma = 90^{\circ}$
Volume	2847.42(8)Å ³	
Ζ	4	

Density (calculated)	1.385 g cm ⁻³
Absorption coefficient	0.762
F(000)	1232
θ range for data collection	2.603 to 25.338°
Index ranges	$-13 \le h \le 13, -27 \le k \le 274, -13 \le l \le 13$
Reflections collected	36876
Independent reflections	5174 [R(int) = 0.0328]
Completeness to $\theta = 25.242^{\circ}$	99.8%
Data / restraints /parameters	5174 / 6 / 343
Goodness-of-fit on F ²	1.040
Final R indices $[I > 2\sigma((I))]$	$R_1 = 0.0284$, $wR_2 = 0.0744$
R indices (all data)	$R_1 = 0.0363$, $wR_2 = 0.0783$

Largest diff. peak and hole

Figure S2. ¹H NMR (400 MHz, CDCl₃) spectrum of **S1**, δ 7.16 (1H, dd, J = 7.8, 1.7 Hz, Ar*H*), 7.00 (1H, dd, J = 7.5, 1.7 Hz, Ar*H*), 6.82 (1H, t, J = 7.6 Hz, Ar*H*), 4.86 (1H, s, O*H*), 2.61 – 2.51 (2H, m, C*H*₂), 1.73 – 1.61 (2H, m, C*H*₂), 1.43 (9H, s, (C*H*₃)₃), 1.02 (3H, t, J = 7.3 Hz, C*H*₃)

Figure S3. ¹³C NMR (101 MHz, CDCl₃) spectrum of **S1**, δ 152.4, 135.8, 127.7, 125.0, 120.0, 34.6, 32.3, 29.9, 22.9, 14.2

Figure S4. ¹H NMR (400 MHz, CDCl₃) spectrum of **3a**, δ (ppm): 8.29 (1H, s, C*H*), 7.33 (1H, t, J = 7.6 Hz, Ar*H*), 7.23 (2H, t, J = 8.0 Hz, Ar*H*), 4.43-4.31 (2H, m, NC*H*), 2.85-2.75 (2H, m, ArC*H*), 1.62 (6H, d, J = 5.7 Hz, C*H*₃), 1.47 (6H, d, J = 5.7 Hz, C*H*₃), 1.24 (12H, d, J = 6.9 Hz, C*H*₃)

Figure S5. ¹³C NMR (101 MHz, CDCl₃) spectrum of **3a**, δ (ppm): 165.3, 149.7, 139.1, 129.3, 125.3, 58.5, 52.6, 27.7, 23.2, 20.8, 19.7

Figure S6. ¹H NMR (400 MHz, CDCl₃) spectrum of **3b**, δ (ppm): 8.32 (1H, s, NCHO), 7.33 (1H, dd, J = 8.2, 7.3 Hz, Ar*H*), 7.21 (2H, d, J = 7.7 Hz, Ar*H*), 4.12 – 3.95 (4H, m, NC*H*₂), 2.89 (2H, hept, J = 6.8 Hz, C*H*), 1.99 – 1.78 (6H, m, C*H*₂), 1.23 (12H, d, J = 6.8 Hz, C*H*₃).

Figure S7. ¹³C NMR (101 MHz, CDCl₃) spectrum of **3b**, δ (ppm): 162.8, 149.0, 139.3, 129.2, 125.2, 53.2, 47.3, 27.5, 26.4, 25.9, 22.9, 22.8.

Figure S8. ¹H NMR (400 MHz, CDCl₃) spectrum of **3c**, 8.41 (1H, s, NCHO), 7.36 – 7.28 (1H, m, Ar*H*), 7.21 (2H, d, J = 7.7 Hz, Ar*H*), 4.20 (2H, t, J = 6.7 Hz, NC*H*₂), 3.99 (2H, t, J = 6.9 Hz, NC*H*₂), 2.91 (2H, hept, J = 6.8 Hz, CC*H*), 2.34 – 2.14 (4H, m, C*H*₂), 1.21 (12H, d, J = 6.8 Hz, C*H*₃).

Figure S9. ¹³C NMR (101 MHz, CDCl₃) spectrum of **3c**, δ (ppm): 163.0, 149.3, 139.5, 129.1, 125.1, 77.4, 77.1, 76.8, 52.6, 49.6, 27.4, 24.6, 23.9, 23.0.

Figure S11. ¹³C NMR (101 MHz, CD₂Cl₂) spectrum of **3d**, δ (ppm): 164.9, 151.7, 140.8, 133.8, 129.4, 128.4, 126.2, 49.8, 46.0, 34.8, 32.0, 30.7, 24.9, 24.1, 22.9, 13.5

Figure S12. ¹H NMR (400 MHz, CD₂Cl₂) spectrum of **4a**, δ (ppm): 15.64 (1H, s, Ru=C*H*), 7.56-7.52 (1H, m, Ar*H*), 7.48 (1H, t, J = 7.6 Hz, Ar*H*), 7.33 (2H, d, J = 8.0 Hz, Ar*H*), 6.94 (1H, d, J = 8.4 Hz, Ar*H*), 6.89 (2H, t, J = 2.9 Hz, Ar*H*), 5.25 (1H, m, J = 6.3 Hz, C*H*), 5.13-5.04 (1H, m, C*H*), 3.79-3.69 (1H, m, C*H*), 3.19-3.09 (2H, m, C*H*), 1.67 (12H, d, J = 6.1 Hz, C*H*₃), 1.55 (6H, d, J = 6.9 Hz, C*H*₃), 1.12 (6H, d, J = 6.7 Hz, C*H*₃), 0.86 (6H, d, J = 6.9 Hz, C*H*₃)

Figure S13. ¹³C NMR (101 MHz, CD₂Cl₂) spectrum of **4a**, δ (ppm): 223.6, 152.1, 151.4, 144.0, 142.5, 130.4, 127.2, 124.6, 122.9, 122.5, 112.9, 74.9, 56.8, 50.3, 26.4, 25.4, 22.4, 22.0, 21.8, 20.1

Figure S14. ¹H NMR (400 MHz, CD₂Cl₂) spectrum of **4b**, δ (ppm): 15.67 (1H, s, Ru=C*H*), 7.56-7.52 (1H, m, Ar*H*), 7.45 (1H, t, J = 7.6 Hz, Ar*H*), 7.30 (2H, d, J = 7.6 Hz, Ar*H*), 6.96-6.87 (3H, m, Ar*H*), 5.16-5.07 (1H, m, OC*H*), 4.51 (2H, t, J = 5.5 Hz, C*H*₂), 4.01 (2H, t, J = 5.5 Hz, C*H*₂), 3.24-3.13 (2H, m, C*H*₂), 2.13-2.07 (2H, m, C*H*₂), 1.88-1.82 (2H, m, C*H*₂), 1.74-1.68 (8H, m, C*H*₂, and C*H*₃), 1.11 (6H, d, J = 6.9 Hz, C*H*₃), 0.95 (6H, d, J = 6.9 Hz, C*H*₃)

Figure S15. ¹³C NMR (101 MHz, CD₂Cl₂) spectrum of **4b**, δ (ppm): 220.0, 152.1, 152.0, 143.6, 141.8, 130.4, 127.0, 124.1, 122.7, 122.5, 112.9, 75.2, 47.7, 26.8, 26.3, 24.3, 24.1, 21.9, 21.1

Figure S16. ¹H NMR (400 MHz, CD₂Cl₂) spectrum of **4c**, δ (ppm): 15.70 (1H, s, Ru=CH), 7.56-7.51 (1H, m, Ar*H*), 7.46 (1H, t, J = 7.8 Hz, Ar*H*), 7.30 (2H, d, J = 7.6 Hz, Ar*H*), 6.98-6.87 (3H, m, Ar*H*), 5.20-5.10 (1H, m, OC*H*), 4.81 (2H, t, J = 6.7 Hz, C*H*₂), 4.04 (2H, t, J = 7.2 Hz, C*H*₂), 3.24-3.13 (2H, m, C*H*₂), 2.24-2.18 (2H, m, C*H*₂), 2.09-2.02 (2H, m, C*H*₂), 1.72 (6H, d, J = 6.1 Hz, C*H*₃), 1.12 (6H, d, J = 7.2 Hz, C*H*₃), 0.93 (6H, d, J = 6.5 Hz, C*H*₃)

Figure S17. ¹³C NMR (101 MHz, CD₂Cl₂) spectrum of **4c**, δ (ppm): 221.1, 152.3, 152.2, 143.5, 141.8, 130.2, 127.0, 124.1, 122.4, 112.8, 75.4, 50.5, 50.3, 26.8, 26.1, 24.5, 23.8, 21.9, 21.2

Figure S18. ¹H NMR (400 MHz, CD₂Cl₂) spectrum of **4d**, δ (ppm): 15.90 (1H, s, Ru=CH), 7.55-7.47 (2H, m, Ar*H*), 7.33 (1H, t, J = 7.6 Hz, Ar*H*), 7.09 (1H, dd, J = 7.4, 1.3 Hz, Ar*H*), 6.99-6.92 (3H, m, Ar*H*), 5.21-5.12 (1H, m, OC*H*), 4.92-4.80 (2H, m, NC*H*₂), 3.99 (2H, ddd, J = 27.9, 12.7, 7.2 Hz, NC*H*₂), 2.66-2.58 (1H, m, C*H*₂), 2.32-1.99 (5H, m, C*H*₂, C*H*₂ C*H*₂), 1.65-1.81 (6H, m, C*H*₃), 1.51-1.39 (2H, m, C*H*₂), 1.30 (9H, s, (C*H*₃)₃), 0.82 (3H, t, J = 7.2 Hz, C*H*₃)

Figure S19. ¹³C NMR (101 MHz, CD₂Cl₂) spectrum of **4d**, δ (ppm): 221.8, 154.1, 152.6, 143.1, 142.1, 137.3, 130.2, 128.5, 126.3, 125.9, 122.5, 122.4, 112.9, 75.4, 51.0, 50.7, 35.6, 33.3, 31.6, 25.9, 24.1, 23.6, 21.9, 21.8, 13.6.

Figure S20. ¹H NMR (400 MHz, CD₂Cl₂) spectrum of **5a**, δ 7.19 (2H, d, J = 7.3 Hz, Ar*H*), 5.79-5.69 (1H, m, C*H*), 3.84-3.74 (1H, m, C*H*), 3.38-3.28 (1H, m, C*H*), 2.99-2.89 (1H, m, C*H*), 1.56 (6H, dd, J = 10.1, 6.9 Hz, C*H*₃), 1.36 (9H, q, J = 6.6 Hz, C*H*₃), 1.25 (3H, d, J = 6.9 Hz, C*H*₃), 1.07 (3H, d, J = 6.9 Hz, C*H*₃), 0.99 (3H, d, J = 6.9 Hz, C*H*₃).

300 280 . 160 . 140 60 40 20 0 -10 -90 260 240 220 200 180 120 100 80 Chemical Shift (ppm) -30 -50 -70

Figure S21. ¹³C NMR (101 MHz, CD₂Cl₂) spectrum of **5a**, δ 219.7, 186.0, 182.6, 150.3, 142.2, 140.6, 127.3, 123.9, 123.2, 59.0, 49.9, 27.6, 26.5, 26.1, 21.3, 20.7, 20.2, 19.9, 19.0.

Figure S22. ¹H NMR (400 MHz, CD_2Cl_2) spectrum of **5c**, δ 7.34-7.26 (2H, m, Ar*H*), 7.15 (1H, dd, J = 7.2, 1.9 Hz, Ar*H*), 6.50-6.40 (1H, m, C*H*), 4.61 (1H, t, J = 7.6 Hz, C*H*), 4.49 (1H, q, J = 8.0 Hz, C*H*), 3.81-3.58 (3H, m, CH), 2.82-2.68 (2H, m, C*H*₂), 2.49-2.38 (1H, m, C*H*), 2.01 (1H, q, J = 7.6 Hz, C*H*), 1.90-1.77 (2H, m, C*H*₂), 1.70-1.59 (1H, m, C*H*), 1.50-1.39 (12H, m, C*H*₃), 1.32 (3H, d, J = 6.5 Hz, C*H*₃), 1.24 (6H, d, J = 6.9 Hz, C*H*₃), 1.05 (3H, d, J = 6.9 Hz, C*H*₃).

Figure S23. ¹³C NMR (101 MHz, CD₂Cl₂) spectrum of **5c**, δ 228.4, 150.2, 143.0, 140.7, 126.6, 124.2, 122.4, 99.6, 96.4, 69.5, 65.5, 58.2, 49.2, 35.6, 30.3, 28.8, 27.6, 27.3, 26.8, 26.3, 25.7, 21.7, 21.1, 20.4, 19.7.

Figure S24. ¹H NMR (400 MHz, CD_2Cl_2) spectrum of **5d**, δ 7.32 (1H, dd, J = 7.7, 1.4 Hz, Ar*H*), 7.24 (1H, t, J = 7.6 Hz, Ar*H*), 7.07 (1H, dd, J = 7.6, 1.4 Hz, Ar*H*), 4.74 (3H, m, C*H*, C*H*₂), 4.27 (1H, J = 12.1, 6.5 Hz, C*H*), 4.10 – 3.93 (1H, m, C*H*), 3.75 (1H, m, C*H*), 3.64 – 3.46 (2H, m, C*H*₂), 2.59 (1H, m, C*H*₂), 2.54 – 2.36 (2H, m, C*H*₂), 2.13 – 1.91 (6H, m, C*H*₂), 1.90 – 1.73 (1H, m), 1.58 – 1.43 (3H, m, C*H*₃), 1.39 (3H, d, J = 6.7 Hz, C*H*₃), 1.33 – 1.22 (2H, m, C*H*₂), 1.22 – 1.12 (3H, d, J = 6.9 Hz, C*H*₃), 1.07 (3H, d, J = 6.8 Hz, C*H*₃), 1.00 (3H, d, J = 6.9 Hz, C*H*₃).

Figure S25. ¹³C NMR (101 MHz, CD_2Cl_2) spectrum of **5d**, δ 225.0 (d), 150.7, 142.3, 140.4, 126.4, 124.4, 122.2, 100.1 (d, J = 6.4 Hz), 99.1 (d, J = 6.7 Hz), 69.3 (d, J = 14.9 Hz), 66.0 (d, J = 14.3 Hz), 52.7, 48.0, 35.0, 30.1, 29.6, 28.0, 27.1, 26.5, 25.0 (d, J = 3.4 Hz), 24.9, 21.8, 20.4.

²²⁰ ²¹⁰ ²⁰⁰ ¹⁹⁰ ¹⁸⁰ ¹⁷⁰ ¹⁶⁰ ¹⁵⁰ ¹⁴⁰ ¹³⁰ ¹²⁰ ¹¹⁰ ¹⁰⁰ ⁹⁰ ⁸⁰ ⁷⁰ ⁶⁰ ⁵⁰ ⁴⁰ ³⁰ ²⁰ ¹⁰ ⁰ ⁻¹⁰ ⁻²⁰ ⁻¹⁰ ⁻²⁰ Figure S27. ¹³C NMR (101 MHz, CDCl₃) spectrum of **6a**, δ 191.6, 149.2, 141.4, 126.6, 124.2, 58.4,

49.1, 27.4, 24.9, 23.0, 21.5, 19.5

Figure S28. ⁷⁷Se NMR (76 MHz, CDCl₃) spectrum of 6a, δ 284.4

Figure S29. ¹H NMR (400 MHz, CDCl₃) spectrum of **6c**, δ 7.25 (2H, dd, J = 8.5, 6.7 Hz, Ar*H*), 7.20 – 7.13 (3H, m, Ar*H*), 3.89 (2H, t, J = 6.9 Hz, C*H*₂), 3.76 (2H, t, J = 6.9 Hz, C*H*₂), 2.95 (2H, hept, J = 6.9 Hz, C*H*), 2.19 – 2.10 (3H, m, C*H*), 2.09 – 2.00 (3H, m, C*H*₂), 1.29 (6H, d, J = 6.9 Hz, C*H*₃), 1.15 (6H, d, J = 6.9 Hz, C*H*₃)

²²⁰ ²¹⁰ ²⁰⁰ ¹⁹⁰ ¹⁸⁰ ¹⁷⁰ ¹⁶⁰ ¹⁵⁰ ¹⁴⁰ ¹³⁰ ¹²⁰ ¹¹⁰ ¹⁰⁰ ⁹⁰ ⁹⁰ ⁸⁰ ⁷⁰ ⁶⁰ ⁵⁰ ⁴⁰ ³⁰ ²⁰ ¹⁰ ⁰ ⁻¹⁰ ⁻²⁰ ⁻²⁰ **Figure S30**. ¹³C NMR (101 MHz, CDCl₃) spectrum of **6b**, δ 187.1, 149.5, 141.0, 126.7, 123.9, 77.4, 77.1, 76.8, 55.0, 49.0, 27.7, 26.1, 24.6, 24.5, 22.2

Figure S31. ⁷⁷Se NMR (76 MHz, CDCl₃) spectrum of **6b**, δ 286.3

7. Computational Results

All DFT calculations were performed with the Gaussian 09 program.⁴ All calculations were performed with the B3LYP functional and employing the def2-TZVPP basis set.⁵ The ground states were fully optimized without constraints at the corresponding level of theory, were uniquely characterized by the occurrence of no imaginary frequencies, and were verified by the corresponding frequency calculation. The Gibbs free reaction energies and enthalpies were calculated for standard conditions (p = 1 atm, T = 298 K) and were unscaled.

Cartesian

coordinates

of

optimized geometries

NHC-5 (singlet)

С	-0.76723	-1.23413	0.00002
С	0.767227	-1.23413	-0.00002
С	0	1.012022	0
N	-1.07266	0.207683	-2.1E-05
Н	-1.19032	-1.72188	-0.88221
Н	1.190322	-1.72188	0.882209
N	1.072662	0.207682	0.000021
С	-2.43892	0.663045	-3E-06
Н	-2.97691	0.307601	-0.88522
Н	-2.97688	0.307642	0.88525
Н	-2.43681	1.749239	-2.7E-05
С	2.438922	0.663045	0.000003
Н	2.976908	0.307602	0.885219
Н	2.976875	0.30764	-0.88525
Н	2.436811	1.749239	0.000026
Н	1.190272	-1.72182	-0.88231
Н	-1.19027	-1.72182	0.882312
С	-0.76723	-1.23413	0.00002
С	0.767227	-1.23413	-0.00002
С	0	1.012022	0
Ν	-1.07266	0.207683	-2.1E-05
Н	-1.19032	-1.72188	-0.88221
Н	1.190322	-1.72188	0.882209

NHC-5 (triplet)

С	-0.77714	-1.20085	0.000129
С	0.777136	-1.20085	-0.00013
С	0	0.987618	0
N	-1.1447	0.19888	-0.00032
Н	-1.17168	-1.72059	-0.88415
Н	1.171682	-1.72059	0.884145
N	1.144703	0.19888	0.000321
С	-2.49706	0.652568	-0.00013
Н	-3.04837	0.309189	-0.88671
Н	-3.04807	0.309464	0.886755
Н	-2.5127	1.740904	-0.0003
С	2.497057	0.652567	0.000132
Н	3.048371	0.30919	0.886714
Н	3.048076	0.309462	-0.88675
Н	2.512697	1.740903	0.000294
Н	1.171389	-1.71998	-0.88491
Н	-1.17139	-1.71998	0.884911
С	-0.77714	-1.20085	0.000129
С	0.777136	-1.20085	-0.00013
С	0	0.987618	0
N	-1.1447	0.19888	-0.00032
Н	-1.17168	-1.72059	-0.88415
Н	1.171682	-1.72059	0.884145

NHC-6 (singlet)

С	-0.54224	-1.70381	-0.20116
N	-1.23879	-0.56348	-0.06764
N	-1.24273	-2.84368	-0.0855
С	-0.55707	-4.10605	-0.29063
Η	0.490435	-3.89476	-0.48158
Η	-0.64447	-4.74908	0.591054
Н	-0.97613	-4.64741	-1.14584
С	-0.54875	0.699548	-0.2531
Н	-0.63405	1.329114	0.638465
Н	0.498048	0.487637	-0.44722
Н	-0.96582	1.255581	-1.09982
С	-2.68484	-2.94605	0.158725
Н	-2.87546	-3.84115	0.755052
Н	-3.21907	-3.0757	-0.79052
С	-3.18033	-1.7078	0.888962
Н	-2.80234	-1.7166	1.913433
Н	-4.26953	-1.7063	0.939623
С	-2.68049	-0.45987	0.178452
Н	-3.2144	-0.31315	-0.76849
Н	-2.86781	0.426286	0.789026

NHC-6 (triplet)

С	-0.78567	-1.70192	-0.36444
N	-1.1793	-0.50093	0.208258
N	-1.18427	-2.91055	0.187904
С	-0.55184	-4.10017	-0.35239
Н	0.530508	-3.99429	-0.29312
Н	-0.85016	-4.96394	0.241731
Н	-0.82488	-4.28583	-1.40122
С	-0.54448	0.694753	-0.31587
Н	-0.83914	1.550527	0.291501
Н	0.537671	0.584979	-0.26032
Н	-0.81913	0.896488	-1.3613
С	-2.65542	-2.9733	0.260051
Н	-2.92802	-3.85952	0.837057
Н	-3.08981	-3.07183	-0.74682
С	-3.17914	-1.70863	0.944257

Н	-2.86782	-1.71851	1.990592
Н	-4.27051	-1.70614	0.920599
С	-2.65038	-0.43428	0.282342
Н	-3.08462	-0.3163	-0.72251
Н	-2.91941	0.442676	0.874979

CAAC (singlet)

С	-0.61088	0.751801	-0.78237
С	-0.58862	-0.77912	-1.06174
С	0.479114	-1.35468	-0.14453
Ν	0.840899	-0.39689	0.662333
С	0.169168	0.955658	0.52982
С	1.207417	2.075294	0.422711
С	-0.74877	1.204284	1.733893
С	-0.23966	-1.08858	-2.52314
С	-1.92533	-1.45742	-0.70759
С	1.83799	-0.60312	1.708635
Н	-0.11181	1.285407	-1.59256
Н	-1.62287	1.151278	-0.71174
Н	0.708039	3.018255	0.195574
Н	1.92122	1.871018	-0.37617
Н	1.758837	2.214081	1.353486
Н	-1.49588	0.417478	1.832599
Н	-1.27083	2.154373	1.61147
Н	-0.18603	1.259323	2.666641
Н	0.731012	-0.66988	-2.79447
Н	-0.99052	-0.66635	-3.19595
Н	-0.19465	-2.1653	-2.6858
Н	-2.22157	-1.25995	0.323588
Н	-1.84693	-2.53775	-0.8281
Н	-2.71943	-1.09164	-1.36275
Н	1.424609	-0.37545	2.692208
Н	2.711032	0.029948	1.545817
Н	2.135781	-1.6455	1.674128

CAAC (triplet)

C	-0.55461	0.723166	-0.7825

С	-0.6717	-0.82612	-1.02711
С	0.299915	-1.28684	0.009489
N	1.079766	-0.29387	0.56592
С	0.263773	0.958261	0.518987
С	1.171049	2.181765	0.395485
С	-0.64947	1.093505	1.746308
С	-0.24148	-1.18776	-2.46253
С	-2.09644	-1.35148	-0.78181
С	1.910804	-0.59843	1.710793
Н	-0.02567	1.1743	-1.62221
Н	-1.53709	1.191286	-0.71979
Н	0.570292	3.076456	0.221668
Н	1.864602	2.064125	-0.43695
Н	1.748977	2.349795	1.305685
Н	-1.27022	0.206185	1.869954
Н	-1.30554	1.958734	1.638775
Н	-0.06848	1.231785	2.65952
Н	0.776926	-0.85146	-2.65731
Н	-0.90491	-0.72478	-3.19847
Н	-0.27584	-2.26794	-2.61179
Н	-2.46149	-1.07038	0.205541
Н	-2.11798	-2.44033	-0.84716
Н	-2.78849	-0.95654	-1.52997
Н	1.333195	-0.84892	2.610837
Н	2.560635	0.246133	1.935925
Н	2.540809	-1.45406	1.468708

AAOC1	(singlet)
-------	-----------

С	0.354458	0.720869	-0.27674
С	-1.94202	0.300665	-0.45326
Н	-2.39406	-0.13246	-1.346
Н	-2.52082	0.004768	0.422448
Н	-1.90994	1.385666	-0.53399
С	2.73432	1.044619	-0.08533
Н	3.413858	0.575432	0.632404
Ν	1.544682	0.155474	-0.14037
С	3.432911	1.09578	-1.44667
Н	4.352753	1.678845	-1.38141

Н	3.694386	0.100378	-1.8077
Н	2.778623	1.565025	-2.18274
С	2.421272	2.443859	0.43041
Н	1.907631	2.40387	1.389921
Н	3.359574	2.987902	0.558081
Н	1.784722	2.990448	-0.26072
0	-0.61606	-0.20995	-0.32133
С	1.85507	-1.30558	-0.06401
Н	2.944814	-1.34973	-0.04453
С	1.354025	-1.92174	1.244516
Н	0.267399	-1.92807	1.285584
Н	1.708353	-2.9509	1.328454
Н	1.728059	-1.36542	2.104844
С	1.404381	-2.09364	-1.29676
Н	1.838649	-3.09474	-1.26123
Н	0.323256	-2.18966	-1.34061
Н	1.742791	-1.61156	-2.214

AAOC1 (triplet)

С	0.389153	0.303578	-0.78659
С	-1.8932	0.85381	-0.64419
Н	-2.67287	0.921319	0.111073
Н	-1.7585	1.827315	-1.12212
Н	-2.17828	0.122021	-1.40399
С	2.637579	0.932907	-0.01031
Н	3.357054	0.423551	0.636656
N	1.589604	-0.07214	-0.31238
С	3.363598	1.376044	-1.28381
Н	4.179864	2.060851	-1.04697
Н	3.783859	0.522484	-1.81756
Н	2.667699	1.885218	-1.95189
С	2.067571	2.119159	0.760213
Н	1.57039	1.792372	1.672796
Н	2.869258	2.809428	1.027248
Н	1.34034	2.661446	0.155326
0	-0.70796	0.451113	0.03014
С	2.017244	-1.49457	-0.26967
Н	3.080894	-1.50607	-0.52587

С	1.85454	-2.05199	1.148654
Н	0.8017	-2.05633	1.433598
Н	2.233324	-3.07455	1.207184
Н	2.398964	-1.4497	1.876925
С	1.280597	-2.34899	-1.29473
Н	1.671911	-3.3672	-1.26953
Η	0.212894	-2.38864	-1.07944
Н	1.405849	-1.95229	-2.30152

Н	4.433668	0.638114	1.088687
Η	3.5121	2.033722	0.526655
Ν	1.212507	0.482707	0.353256

AAOC2 (triplet)

С	-0.07027	0.959466	0.086116
С	-2.3576	0.431104	-0.05108
Н	-2.98437	-0.44085	-0.22337
Н	-2.58372	0.859638	0.928307
Н	-2.54976	1.181593	-0.82175
0	-1.01077	-0.02046	-0.10801
С	2.072983	0.897954	-1.16709
С	2.080306	0.431676	1.226968
С	3.445676	0.36972	-0.75344
Н	2.116094	1.959881	-1.42982
Н	1.638432	0.360339	-2.01014
С	3.509601	0.692261	0.746934
Н	1.946034	-0.60784	1.543544
Н	1.7785	1.074838	2.053049
Н	3.492508	-0.71025	-0.90623
Н	4.256472	0.823704	-1.32202
Н	4.245528	0.092419	1.280726
Н	3.767743	1.74321	0.892331
N	1.243004	0.702607	0.038304

AAOC2 (singlet)

С	-0.06355	0.581814	0.677613
С	-2.21098	0.677036	-0.26282
Н	-2.5653	1.556248	-0.8014
Н	-2.68761	-0.21308	-0.67429
Н	-2.43591	0.768362	0.798176
0	-0.80022	0.567045	-0.44896
С	1.791131	0.416441	-1.01083
С	2.267541	0.485307	1.375653
С	3.302177	0.308039	-0.77406
Н	1.523317	1.321916	-1.55761
Н	1.377938	-0.42938	-1.55828
С	3.505625	0.944728	0.608507
Н	2.410315	-0.52532	1.769738
Н	1.980328	1.133094	2.199214
Н	3.604358	-0.7408	-0.74668
Н	3.878941	0.795015	-1.55924

8. Reference

1. Schlüter, J.; Blazejak, M.; Hintermann, L., Aluminum-Catalyzed Hydroalkoxylation at Elevated Temperatures: Fast and Simple Access to Coumarans and Other Oxygen Heterocycles. *ChemCatChem* 2013, **5**, 3309-3315.

2. Seo, H.; Snead, D. R.; Abboud, K. A.; Hong, S., Bulky Acyclic Aminooxycarbene Ligands. *Organometallics* 2011, **30**, 5725-5730.

3. (a) Byun S.; Park S.; Choi Y.; Ryu J. Y.; Lee J.; Choi J.-H.; and Hong S., Highly Efficient Ethenolysis and Propenolysis of Methyl Oleate Catalyzed by Abnormal N-Heterocyclic Carbene Ruthenium Complexes in Combination with a Phosphine–Copper Cocatalyst, *ACS Catal.*, 2020, **10**, 10592-10601. (b) Byun, S.; Seo, H.; Choi, J.-H.; Ryu, J. Y.; Lee, J.; Chung, W.-J.; Hong, S., Fluoro-Imidazopyridinylidene Ruthenium Catalysts for Cross Metathesis with Ethylene. *Organometallics* 2019, **38**, 4121-4132.

Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman,
J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.;
Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.;
Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao,
O.; Nakai, H.; Vreven, T.; J. A. Montgomery, J.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd,
J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.;
Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.;
Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.;
Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski,
J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg,
J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; D.
J. Fox Gaussian, Inc.: Wallingford CT, 2013.

5. (a) Weigend, F., Accurate Coulomb-Fitting Basis Sets for H to Rn. *Phys. Chem. Chem.*

Phys. 2006, **8**, 1057-1065. (b) Weigend, F.; Ahlrichs, R., Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. *Phys. Chem. Chem. Phys.* 2005, **7**, 3297-3305.