Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2021

Enhanced thermal stability and afterglow performance in Sr₂Ga_{2-x}Al_xSiO₇:Ce³⁺ phosphors via band gap tailoring

Rongfu Zhou,^{a,*} Fengkai Ma,^b Yunlin Yang,^c Tingting Deng,^a Jingwei Li,^c Hongting Zhao,^a Jie Sheng,^a Qi Peng^a

^a School of Environmental and Chemical Engineering, Foshan University, Foshan 528225, P. R. China.

^b Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, P. R. China.

^c School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R. China.

* E-mail: zhourongfu@fosu.edu.cn (R. Zhou).

Contents

Part A. The details of samples preparations and characterizations2	2
Preparation2)
Characterizations)
References	;
Part B. Tables and Figures4	ŀ
Table S14	ŀ
Table S25	;
Table S35	;
Table S46	,
Table S56	,
Fig. S1	7
Fig. S2	>
Fig. S39)
Fig. S410)

Fig.	\$5	11	
Fig	86	10	,
rig.	50	12	ŕ

PART A. THE DETAILS OF SAMPLES PREPARATIONS AND CHARACTERIZATIONS

Preparation. The reagents SrCO₃ (99.5%, Aladdin), Ga₂O₃ (99.99%, Aladdin), Al₂O₃ (99.99%, Shanghai Siyu Chemical Technology Co., LTD), SiO₂ (99.99%, Aladdin), Na₂CO₃ (99.99%, Aladdin), H₃BO₃ and rare-earth oxides CeO₂ (99.99%, Aladdin) and Eu₂O₃ (99.99%, Shanghai Siyu Chemical Technology Co., LTD) were used as starting materials. The raw materials are weighed with the nominal formulas $Sr_{1.98}Ce_{0.01}Na_{0.01}Ga_{2-x}Al_xSiO_7$ and $Sr_{1.98}Eu_{0.01}Na_{0.01}Ga_{2-x}Al_xSiO_7$ (x = 0.8, 1.2, 1.6, 1.8, 1.9 and 2) for Ce³⁺ and Eu³⁺ singly doped samples, respectively. In addition, about 5% H₃BO₃ was added as flux. Na⁺ ions act as charge compensations in the samples preparations since two Sr²⁺ were replaced by one Ce³⁺ and one Na⁺. The mixtures were ground thoroughly in an agate mortar, and then moved to alumina crucibles. Eu³⁺ doped Sr₂Ga_{2-x}Al_xSiO₇ samples were pre-fired at 973 K in air atmosphere for 5 h, and annealed at 1623 K for 3 h in air ambience with the x content increases from 0.8 to 1.2, 1.6, 1.8, 1.9 and 2. For Ce^{3+} doped $Sr_2Ga_{2-x}Al_xSiO_7$ samples, the annealed temperature and time were set as the same as that of Eu³⁺ doped samples, but the annealed ambiance was carbonic oxide (CO) which was produced from the incomplete combustion of carbon at high temperature. After cooling down to room temperature, the final products were ground into powders for subsequent analyses.

Characterizations. The phase purity of the synthetic samples was estimated by powder X-ray diffraction (P-XRD) on the Bruker D8 advanced X-ray diffractometer at 40 kV and 40 mA. The P-XRD data for refinement was collected with the 2θ range from 5° to 110° and 2θ step of 0.02°. The Rietveld refinement was performed using the TOPAS - Academic program.¹ The TL curves of 300-500 K were performed at the SL18 TL&OSL Reader (Guangzhou-Radiation Science and Technology Co., Ltd) equipped with R928 PMT of Hamamatsu. The samples were weighed about 100 mg on a metal

disc of 10 mm diameter. A mercury lamp (254 nm) of 8 W was used as the light source to charging samples for five min in the TL measurements. The Wavelength-resolved (3D) thermoluminescence (TL) emission spectra and thermoluminescence (TL) curves of 100-310 K were recorded by TOSL-3DS Spectrometer (Guangzhou-Radiation Science and Technology) with a CCD detector (Ocean Optics QE65 Pro).² For recording the decay curves of Ce³⁺ persistent luminescence, the measurements were performed in the Edinburgh FLS 1000 model spectrometer. The powder samples of Sr_{1.98}Ce_{0.01}Na_{0.01}Ga_{2-x}Al_xSiO₇ were filled in a sample cell with quartz window (20 mm diameter), and the 1060 nm laser (Changchun Laser Optoelectronics Technology, MW-GX-1060-1000 mW) were used as the photostimulated sources with the operation of 700 mA (0.248 W). The radiation density of laser received by the samples was calculated to be about 0.79 mW/mm². The monitoring wavelength of decay curves of persistent luminescence was at 400 nm. The X-ray photoelectron spectroscopy was performed on a Thermo Fisher Scientific K-Alpha with the monochromatic Al-Kα source (hv = 1486.8 eV) operated at 15 kV and 10 mA.

The excitation and emission spectra in the VUV-UV range were recorded on the 4B8 beamline of the Beijing Synchrotron Radiation Facility (BSRF).³ The UV-vis excitation and emission spectra and luminescence decay curves at room temperature (RT) were recorded on an Edinburgh FLS 1000 model spectrometer which was a combined fluorescence lifetime and steady-state, equipped with a cooled housing (-20 °C) photomultiplier PMT-900. The 450 W Xenon lamp was used as the excitation source of steady-state excitation and emission spectra. A 150 W nF900 lamp with a pulse width of 1 ns and pulse repetition rate of 40 kHz was used for the measurements of decay curves. The temperature-dependent spectral measurements in the 77–500 K range were performed by mounting the samples in an Oxford cryostat.

References

 A. A. Coelho. TOPAS Academic, Ver. 4; Coelho Software: Brisbane, Australia, 2007.

- 2 H. M. Tang, L. T. Lin, C. X. Zhang, and Q. Tang. High-sensitivity and wide-linearrange thermoluminescence dosimeter LiMgPO₄: Tm, Tb, B for detecting high-dose radiation. *Inorg. Chem.*, 2019, **58**, 9698-9705.
- 3 Y. Tao, Y. Huang, Z. Gao, H. Zhuang, A. Zhou, Y. Tan, D. Li, and S. Sun. Developing VUV spectroscopy for protein folding and material luminescence on beamline 4B8 at the Beijing Synchrotron Radiation Facility. *J. Synchrot. Radiat.*, 2009, 16, 857-863.

PART B. TABLES AND FIGURES

Table S1. Final Refined Structural Parameters	of S	Sr ₂ Ga	2SiO	^{,h} Host.
--	------	--------------------	------	---------------------

Atom	Wyckoff position	х	У	Z	Occ.	B _{iso}
Sr	4e	0.338(2)	0.161(8)	0.509(4)	1	1.79(6)
Gal	2a	0	0	0	1	1.72(3)
Ga2	4e	0.141(3)	0.358(7)	0.962(0)	0.5	1.62(6)
Si	4e	0.141(3)	0.358(7)	0.962(0)	0.5	1.62(6)
01	2c	1/2	0	0.160(2)	1	2.36(4)
02	4e	0.141(9)	0.358(1)	0.273(5)	1	2.27(2)
03	8f	0.083(9)	0.171(1)	0.822(1)	1	2.05(3)

^h Symmetry: tetragonal; space group: $P^{\overline{4}}2_1m$; lattice parameters: a = b = 7.9541(4) Å, c = 5.3185(7) Å, V = 336.49(7) Å³, $\alpha = \beta = \gamma = 90^{\circ}$ and Z = 2; reliability factors: $R_{wp} = 6.71\%$, $R_p = 4.55\%$ and $R_B = 4.41\%$.

Bonds	Distances (Å)
Sr-O1	2.600
Sr-O2	2.540
Sr-O2 (x2)	2.682
Sr-O3 (x2)	2.620
Sr-O3 (x2)	2.949
Average	2.705

Table S2. Distances (Å) of $Sr^{2+}-O^{2-}$ in $Sr_2Ga_2SiO_7$ Sample.

Table S3. Lattice Parameters (*a*, *b*, *c* and *V*) of $Sr_{1.98}Ce_{0.01}Na_{0.01}Ga_{2-x}Al_xSiO_7$ (x = 0.8, 1.2, 1.6, 1.8, 1.9 and 2) Samples.

x	<i>a/ b</i> (Å)	С	V
0.8	7.9099	5.3043	331.87
1.2	7.8840	5.2953	329.14
1.6	7.8597	5.2869	326.60
1.8	7.8427	5.2800	324.76
1.9	7.8359	5.2779	324.07
2	7.8323	5.2738	323.52

Table S4. Bond Distances (Å) of $Sr^{2+} (Ce^{3+})-O^{2-}$ in $Sr_2Ga_{2-x}Al_xSiO_7:Ce^{3+}$ (x = 0.8, 1.2, 1.6, 1.8, 1.9 and 2) Samples.

Bonds	x = 0.8	x = 1.2	x = 1.6	x = 1.8	x = 1.9	x = 2
Sr-O1	2.590	2.583	2.577	2.573	2.571	2.570
Sr-O2	2.527	2.520	2.513	2.508	2.506	2.505
Sr-O2 (x2)	2.669	2.661	2.653	2.648	2.646	2.644
Sr-O3 (x2)	2.608	2.601	2.595	2.590	2.588	2.587
Sr-O3 (x2)	2.935	2.927	2.920	2.914	2.912	2.911
Average	2.693	2.685	2.678	2.673	2.671	2.670

Table S5. Calculated energies of traps based on the temperature-dependent TL curves.

Temperature (K)	Trap energy (eV)
100	0.054
130	0.066
160	0.081
190	0.13
210	0.14
230	0.15
250	0.22
280	0.22
310	0.39
325	0.54

Fig. S1 Highest-height normalized synchrotron radiation VUV-UV excitation ($\lambda_{em} = 380 \text{ nm}, 10 \text{ K}$) spectra of Sr_{1.98}Ce_{0.01}Na_{0.01}Ga_{2-x}Al_xSiO₇ (x = 0.8, 1.2, 1.6, 1.8, 1.9 and 2) samples; the inset shows Gaussian fitting results of excitation spectrum (4.7-5.8 eV) of representative Sr_{1.98}Ce_{0.01}Na_{0.01}Al₂SiO₇ sample.

Fig. S2 Integral intensity of Ce^{3+} emission ($\lambda_{ex} = 320$ nm, 10 K) in $Sr_{1.98}Ce_{0.01}Na_{0.01}Ga_{2-x}Al_xSiO_7$ (x = 0.8, 1.2, 1.6, 1.8, 1.9 and 2) samples.

Fig. S3 (a-c) Temperature-dependent decay curves ($\lambda_{ex} = 320 \text{ nm}$, $\lambda_{em} = 400 \text{ nm}$) of Sr_{1.98}Ce_{0.01}Na_{0.01}Ga_{2-x}Al_xSiO₇ (a, x = 1.8; b, x = 1.9; c, x = 2) samples; (d) lifetimes of Ce³⁺ in Sr_{1.98}Ce_{0.01}Na_{0.01}Ga_{2-x}Al_xSiO₇ (x = 1.9 and 2) samples as a function of temperature and the corresponding fitting results.

Fig. S4 Synchrotron radiation VUV-UV excitation ($\lambda_{em} = 611$ nm, 10 K) spectra of Eu³⁺ in Sr_{1.98}Eu_{0.01}Na_{0.01}Ga_{2-x}Al_xSiO₇ (x = 0.8, 1.2, 1.6, 1.8, 1.9 and 2) samples.

Fig. S5 X-ray photoelectron spectroscopy of $Sr_{1.98}Ce_{0.01}Na_{0.01}Al_2SiO_7$ sample, the inset shows the enlarged range of 870-930 eV.

Fig. S6 Estimated trap depths as a function of excitation temperature ($T_{exc} = 100-350$ K) in Sr_{1.98}Ce_{0.01}Na_{0.01}Al₂SiO₇ sample.

Fig. S7 (a) PersL decay curves ($T_{exc} = 77$, 130, 230 and 330 K) of $Sr_{1.98}Ce_{0.01}Na_{0.01}Al_2SiO_7$ sample and corresponding fitting results; (b) Normalized temperature-dependent PersL decay curves ($\lambda_{ex} = 254$ nm Hg lamp, $\lambda_{em} = 400$ nm) of $Sr_{1.98}Ce_{0.01}Na_{0.01}Al_2SiO_7$ sample.