Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2021

Supporting Information

UiO-67-derived bithiophene and bithiazole MIXMOFs for

luminescence sensing and removal of contaminants of

emerging concern in wastewater

Giorgio Mercuri,^{a,b} Marco Moroni,^c Simona Galli,^{c,*} Clara Piccirillo,^{d,*} Agostina-Lina Capodilupo,^d

Giulia Tuci,^a Giuliano Giambastiani,^{a,e} Andrea Rossin^{a,*}

^a Istituto di Chimica dei Composti Organometallici (ICCOM-CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy.

^b Scuola del Farmaco e dei Prodotti della Salute, Università di Camerino, Via S. Agostino 1, 62032 Camerino, Italy.

^c Dipartimento di Scienza e Alta Tecnologia, Università dell'Insubria, Via Valleggio 11, 22100 Como, Italy.

^d CNR NANOTEC, Institute of Nanotechnology, Campus Ecoteckne, Via Monteroni, 73100 Lecce, Italy.

^e Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), UMR 7515 CNRS-University of Strasbourg (UdS), 25, rue Becquerel, 67087 Strasbourg Cedex 02, France.

Scheme S1. Molecular formulae of the CECs used in this work: Diclofenac Sodium (DCF), Fluoxetine (FXT), Ibubrofen (IBR) and Sulfametoxazole (SMZ).

Ligand quantification in the MIXMOFs UiO-67-TpTp·DMF and UiO-67-TzTz·DMF

The approximate linkers composition in the two MIXMOFs has been assessed through ¹H NMR analysis of the digested samples in acidic solutions (48% aqueous HF, Sigma Aldrich/DMSO-*d*₆). In a typical procedure, 10 mg of sample was dissolved in three drops of aqueous hydrofluoric acid and 0.6 mL of DMSO-*d*₆ directly into an NMR tube. The mixture was heated at T = 343 K for 12 h, to complete the sample digestion. The as-obtained clear yellow solution was analysed *via* ¹H NMR (400 MHz, relaxation delay τ = 15 s, 512 scans).

Figure S1. Zoom of the aromatic region used for the quantification of the ligands ratio from the ¹H NMR spectrum (400 MHz, HF_{aq}/DMSO-*d*₆, 298 K) of digested **UiO-67-TpTp·DMF**. * Clathrated DMF solvent signal.

Figure S2. Infrared spectra (KBr, T = 298 K) of UiO-67-TpTp·DMF and H₂TpTp·DMF at comparison.

Figure S3. Zoom of the aromatic region used for the quantification of the ligands ratio from the ¹H NMR spectrum (400 MHz, HF_{aq}/DMSO-*d*₆, 298 K) of digested **UiO-67-TzTz·DMF**. * Clathrated DMF solvent signal.

Figure S4. Infrared spectra (KBr, T = 298 K) of UiO-67-TzTz·DMF and H_2TzTz at comparison.

Figure S5. Graphical result of the final structure refinement carried out with the Rietveld method on the PXRD pattern of **UiO-67-TzTz·DMF** in terms of experimental, calculated and difference traces (blue, red and grey, respectively). The violet markers at the bottom indicate the positions of the Bragg reflections.

Figure S6. SALE for the synthesis of **UiO-67-TpTp·DMF** monitored through ¹H NMR spectroscopy in DMF- d_7 solution (400 MHz, T = 298 K). Bottom: spectrum of **H**₂**TpTp** initial solution at t = t₀. Top: spectrum recorded after keeping the NMR tube with added **UiO-67** for 12 h at T = 393 K. The new

signals ascribed to the biphenyl linker coming from a partial **PhPh**²⁻/**TpTp**²⁻ exchange are clearly visible in the supernatant. * DMF residual solvent signal.

Figure S7. SALE for the synthesis of **UiO-67-TzTz·DMF** monitored through ¹H NMR spectroscopy in DMF- d_7 solution (400 MHz, T = 298 K). Bottom: spectrum of **H**₂**TzTz** initial solution at t = t₀. Top: spectrum recorded after keeping the NMR tube with added **UiO-67** for 12 h at T = 393 K. The new

signals ascribed to the biphenyl linker coming from a partial **PhPh**²⁻/**TzTz**²⁻ exchange are clearly visible in the supernatant. * DMF residual solvent signal.

Figure S8. PXRD pattern of **UiO-67-TpTp·DMF** before (black) and after (green) soaking in water at ambient temperature for 12 h.

Figure S9. PXRD pattern of **UiO-67-TzTz·DMF** before (black) and after (blue) soaking in water at ambient temperature for 12 h.

Figure S10. Emission intensity variation *vs.* CEC concentration in the luminescent response of UiO-67-TpTp·DMF (a) and UiO-67-TzTz·DMF (b).

Figure S11. Linear data fitting for the dependence of the emission intensity from the CEC concentration for **UiO-67-TzTz·DMF**. (a) Diclofenac sodium, (b) fluoxetine, (c) ibuprofen and (d) sulfamethoxazole.

Figure S12. X-ray fluorescence spectra of **UiO-67-TzTz·DMF** (a) and [DCF@**UiO-67-TzTz**] (b) measured in air. The characteristic lines of argon come from air, those of chromium from the anode of the X-ray source and those of calcium from the sample-holder.

Figure S13. PXRD patterns of UiO-67-TzTz·DMF and [DCF@UiO-67-TzTz] at comparison.

Figure S14. Linear data fitting according to a Langmuir model of the DCF adsorption isotherm of **UiO-67-TzTz·DMF**.