Supporting Information

In-situ construction of FeNi₂Se₄-FeNi LDH heterointerfaces with electron redistribution for enhanced overall water splitting

Hanzhi Yu, Yaoyi Xie, Liming Deng, Hongjiao Huang, Junnan Song, Deshuang Yu, Linlin Li* and Shengjie Peng*

Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China E-mail: lilinlin@nuaa.edu.cn, pengshengjie@nuaa.edu.cn **Supplementary Figures and Tables**

Fig. S1. Optical photograph of (a) bare nickel foam, (b) FeNi LDH/NF, (c) FeNi₂Se₄-FeNi LDH/NF and (d) FeNi₂Se₄/NF.

Fig. S2. SEM images of (a, b) FeNi₂Se₄-FeNi LDH/NF-90.

Fig. S3. EDX pattern of FeNi₂Se₄-FeNi LDH/NF.

Fig. S4. XRD spectrum of FeNi LDH via different selenization temperatures.

Fig. S5. Raman spectra of FeNi LDH and FeNi $_2$ Se₄-FeNi LDH.

Fig. S6. XPS full spectra of (a) FeNi LDH, (b) FeNi₂Se₄-FeNi LDH and (c) FeNi₂Se₄.

Fig. S7. O 1s of (a) FeNi LDH, (b) FeNi₂Se₄-FeNi LDH and (c) FeNi₂Se₄.

Fig. S8. (a) N_2 adsorption/desorption isotherm and (b) the corresponding pore size distribution of FeNi LDH.

Fig. S9. (a) N_2 adsorption/desorption isotherm and (b) the corresponding pore size distribution of FeNi₂Se₄.

Fig. S10. (a) N_2 adsorption/desorption isotherm and (b) the corresponding pore size distribution of FeNi₂Se₄-FeNi LDH.

Fig. S11. (a) OER and (d) HER LSV curves of FeNi₂Se₄-FeNi LDH/NF-90, FeNi₂Se₄-FeNi LDH/NF-120 and FeNi₂Se₄/NF-160. (b, e) Tafel plots. (c, f) Nyquist plots.

Fig. S12. OER LSV polarization curves normalized to catalyst loading of FeNi LDH, FeNi₂Se₄ and FeNi₂Se₄-FeNi LDH.

Fig. S13. Cyclic voltammograms of different samples from 20 mV s⁻¹ to 140 mV s⁻¹ between 0.31 V and 0.41 V.

Fig. S14. OER LSV curves of FeNi₂Se₄-FeNi LDH/NF before and after 3000 CV scans.

Fig. S15. (a) XPS full spectra of FeNi₂Se₄-FeNi LDH/NF after OER test, (b) Se 3d spectra, (c) Ni 2p spectra and (d) Fe 2P spectra after OER test.

Fig. S16. HER LSV polarization curves normalized to catalyst loading of FeNi LDH, FeNi₂Se₄ and FeNi₂Se₄-FeNi LDH.

Fig. S17. SEM images of (a, b) FeNi₂Se₄-FeNi LDH/NF after the HER test.

Fig. S18. Overall water splitting performance in 1.0 M KOH. (a) Polarization curves of FeNi₂Se₄-FeNi LDH/NF-90, FeNi₂Se₄-FeNi LDH/NF-120 and FeNi₂Se₄/NF-160 with iR correction. (b) Nyquist plots.

Fig. S19. Amount of hydrogen theoretically calculated and experimentally measured and the Faradaic efficiency.

Catalysts	Tafel slope (mV dec ⁻¹)	Overpotential (mV)	Reference
FeNi ₂ Se ₄ -FeNi LDH /NF	30.14	205 @10	This work
MoS ₂ /Fe ₅ Ni ₄ S ₈ /FeNi foam	28.1	204 @10	Adv. Mater. 2018, 30, 1803151
CoV-Fe _{0.28}	39.1	215 @10	Adv. Energy Mater. 2020, 10, 2002215
FeNi LDH/CoP/CC	33.5	225 @10	Angew. Chem. Int. Ed. 2019, 58,11903-11909
$(Ni_{0.77}Fe_{0.23})Se_2$	69	228 @10	J. Mater. Chem. A 2019, 7, 2831- 2837
H ₂ PO ₂ ^{-/} FeNi-LDH-V ₂ C	46	250 @10	Applied Catalysis B: Environmental 2021, 297, 120474
CoO-CoSe ₂ @N- CNTs/rGO	68	250 @10	Chemical Engineering Journal 2021, 422, 129982
Fe _{0.09} Co _{0.13} -NiSe ₂	63	251 @10	Adv. Mater. 2018, 30, 1802121
Ni-Fe-S _{3:1} -160	40	245 @20	J. Mater. Chem. A 2019, 7, 12350- 12357
Fe _{7.4%} -NiSe	43	231 @50	J. Mater. Chem. A 2019, 7, 2233- 2241
NiSe-Ni _{0.85} Se/CP	98	300 @10	Small 2018, 14, 1800763
FeOOH(Se)	54	287 @10	J. Am. Chem. Soc. 2019, 141, 7005- 7013
NiFe(OH) _x /FeS		245 @50	Adv. Funct. Mater. 2019, 29, 1902180
MIL-59(FeNi)/Co NSs	38.46	216 @20	Chemical Engineering Journal 2020, 400, 125884

NF/NiSe@Fe ₂ O ₃	36.9	220 @10	Science Bulletin 2021, 66, 52-61
M-CoO/CoFe LDHs	34	254 @10	Small 2018, 14, 1800195
CoFeV LDH/NF	57	242 @10	ACS Sustainable Chem. Eng. 2019, 7, 16828-16834
Ni ₃ Se ₄ @NiFe LDH/CFC	55.5	223 @10	Nanoscale Horiz. 2019, 4, 1132-1138
Fe-CoF ₂ -300	41.9	230 @10	Chemical Engineering Journal 2021, 425, 130686
Co ₉ S ₈ @NiFe LDH	52	220 @10	J. Mater. Chem. A 2021, 9, 12244- 12254
NiCo ₂ S ₄ @NiFe LDH	86.4	287 @10	Applied Catalysis B: Environmental 2021, 286, 119869

Catalysts	Substrate	Voltage (V)	Reference
FeNi ₂ Se ₄ -FeNi LDH/NF	NF	1.56	This work
FeNi LDH/CoP/CC	CC	1.617	Angew. Chem. Int. Ed. 2019, 58,11903-11909
NiSe-Ni _{0.85} Se/CP	СР	1.62	Small 2018, 14, 1800763
NiCo ₂ S ₄ @NiFe LDH	NF	1.6	Applied Catalysis B: Environmental 2021, 286, 119869
hetero-Ni ₃ Se ₄ @NiFe LDH/CFC	CFC	1.54	Nanoscale Horiz. 2019, 4, 1132- 1138
Co ₉ S ₈ @NiFe LDH	NF	1.63	J. Mater. Chem. A 2021, 9, 12244- 12254
CCF LDH-60	Cu foam	1.681	Nano Energy 2017, 41 327-336
FeNi@FeNiB-700	FeNi foam	1.65	J. Mater. Chem. A 2019, 7, 19554- 19564
Fe _{7.4%} -NiSe	NF	1.585	J. Mater. Chem. A 2019, 7, 2233- 2241
NiFe LDH@NiCoP	NF	1.57	Adv. Funct. Mater. 2018, 1706847

Table S2. The comparison of water splitting performances of $FeNi_2Se_4$ -FeNi LDH/NF and other catalysts in the literature.

Catalysts	Rs (ohm)	Rct (ohm)	Error (%)
FeNi LDH	1.275	11.3	0.807
FeNi ₂ Se ₄	0.897	5.288	2.586
FeNi ₂ Se ₄ -FeNi LDH	1.209	2.445	0.816

Table S3. OER Fitting results of EIS for FeNi LDH, FeNi₂Se₄ and FeNi₂Se₄-FeNi LDH.

Catalysts	Rs (ohm)	Rct (ohm)	Error (%)
FeNi LDH	1.419	7.660	1.113
FeNi ₂ Se ₄	1.390	1.818	0.204
FeNi ₂ Se ₄ -FeNi LDH	1.249	5.668	0.390

Table S4. HER Fitting results of EIS for FeNi LDH, FeNi₂Se₄ and FeNi₂Se₄-FeNi LDH.