Supporting Information of

Synthesis of NaBH₄ as a hydrogen carrier from hydrated borax

using a Mg-Al alloy

Yongyang Zhu, a Hao Zhong, a Liuzhang Ouyang, *ab Jiangwen Liu, a Hui Wang, a

Huaiyu Shao, *c and Min Zhu^a

a: School of Materials Science and Engineering, Guangdong Provincial Key Laboratory

of Advanced Energy Storage Materials, South China University of Technology,

Guangzhou, 510641, People's Republic of China.

b: China-Australia Joint Laboratory for Energy & Environmental Materials, Key Laboratory of Fuel Cell Technology of Guangdong Province, Guangzhou, 510641, People's Republic of China.

c: Guangdong-Hong Kong-Macau Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Institute of Applied Physics and Materials Engineering (IAPME), Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Macau SAR, China.

* Author to whom correspondence should be addressed.

Liuzhang Ouyang, E-mail address: <u>meouyang@scut.edu.cn</u> Tel: 86-20-87114253, Fax: 86-20-87114253 and Huaiyu Shao (<u>hshao@um.edu.mo</u>)

Table of Contents

Table of Contents
Supplementary Data
Figure S1S-3
Figure S2S-4
Figure S3S-5
Figure S4S-6
Figure S5S-7
Figure S6S-8
Figure S7S-9
Figure S8
Table S1S-12
Table S2S-13
Table S3S-14
ReferencesS-15

Supplementary Data

Figure S1. (a) XRD patterns of 1) standard PDF card of $Mg_{17}Al_{12}$, 2) raw $Mg_{17}Al_{12}$, 3)

standard PDF card of Mg_2Al_3 , and 4) raw Mg_2Al_3 .

Figure S2. (a) XRD patterns and (b) FTIR spectra of products obtained after milling NaH and Na₂B₄O₇·10H₂O in different molar ratios for 20 h (Na₂B₄O₇·10H₂O and Mg₁₇Al₁₂ were fixed at 1:0.607). In Figure S2b, IR band at 811 cm⁻¹ corresponds to the formation of O-O triangular species bonds and the bands at 617 and 558 cm⁻¹ belong to the vibrations of Al-O bond in NaAlO₂ [1, 2].

Figure S3. (a) XRD patterns of standard PDF card of NaBH₄, commercial NaBH₄ and purified product; (b) FTIR spectra of commercial NaBH₄ and purified product; SEM images of (c) purified product by using $Mg_{17}Al_{12}$ as reducing agent, (d) purified product by using Mg_2Al_3 , and (e) commercial NaBH₄.

Figure S4. XRD patterns of products obtained after milling NaH and Na₂B₄O₇·10H₂O in different molar ratios for 20 h (Na₂B₄O₇·10H₂O and Mg were fixed at 1:21.25).

Figure S5. Yields of NaBH₄ of the products obtained after milling Na₂B₄O₇·10H₂O, NaH, and Mg₁₇Al₁₂/(17Mg+12Al) mixtures (in 1:4:0.850 molar ratio) for 20 h at 1200 CPM.

Figure S6. FTIR spectra of products obtained via ball milling $Mg_{17}Al_{12}$, $Na_2B_4O_7$ ·10H₂O, and NaH in a molar ratio of 0.850:1:4 at 1200 CPM for different durations.

Figure S7. XPS of 1) raw commercial $Mg_{17}Al_{12}$ after milling 10 h at 1200 CPM and 2) products obtained after milling $Mg_{17}Al_{12}$, NaH, and $Na_2B_4O_7 \cdot 10H_2O$ in a molar ratio of 0.486:4:1 for 10 h at 1200 CPM.

Figure S8. (a) XRD patterns and (b) FTIR spectra of 1) raw $Na_2B_4O_7 \cdot 10H_2O$; products obtained after ball milling Mg_2Al_3 , NaH, and $Na_2B_4O_7 \cdot 10H_2O$ mixtures (in a 2.62:4:1 molar ratio) with different durations at 1200 CPM; (c) MS of the gaseous sample obtained after ball milling Mg_2Al_3 , NaH, and $Na_2B_4O_7 \cdot 10H_2O$ mixtures (in a 2.62:4:1

molar ratio) with different durations at 1200 CPM; (d) solid-state ¹¹B NMR spectra of products obtained 1) after milling Mg₂Al₃, NaH, and Na₂B₄O₇·10H₂O in a molar ratio of 2.62:4:1 for 10 h at 1200 CPM and 2) after milling Mg₁₇Al₁₂, NaH, and Na₂B₄O₇·10H₂O in a molar ratio of 0.486:4:1 for 10 h at 1200 CPM; (e) XPS of 1) raw Mg₂Al₃ after milling 5 h at 1200 CPM and 2) products obtained after milling Mg₂Al₃, NaH, and Na₂B₄O₇·10H₂O in a molar ratio of 2.62:4:1 for 5 h at 1200 CPM.

	Al: "10H ₂ O"		Mg: "10H ₂ O"		Mg ₁₇ Al ₁₂ : "10H ₂ O"		
NaH: "10H ₂ O"	(14.1	(14.16:1)		(21.25:1)		(0.607:1)	
	Fe (wt%)	Cr (wt%)	Fe(wt%)	Cr(wt%)	Fe(wt%)	Cr(wt%)	
2:1	24.34	0.85	16.94	0.74	27.87	0.54	
4:1	20.91	0.44	2.30	0.11	9.05	0.14	
6:1	9.62	0.25	1.48	0.06	0.54	0.03	
8:1	4.86	0.14	0.81	0.11			

Table S1. EDS results of products obtained after ball milling NaH and Na $_2B_4O_7$ ·10H $_2O$ ("10H $_2O$ ") in different molar ratios for 20 h.

Reactants	Method and conditions	Max yield (%)	
NaBO ₂ :Mg (1:2)	anneal at 550°C, 7 MPa H ₂	10 [3]	
NaBO ₂ ·2H ₂ O:Mg (1:4)	anneal at 600°C, 3 MPa H_2	12.3 [4]	
Na ₂ B ₄ O ₇ :Mg (1:16)	anneal at 550°C, 25 bar H_2	46.5 ^[a] [5]	
Na ₂ B ₄ O ₇ :MgH ₂ (1:9.5)	planetary ball 2750 rpm, 1 h, 1 atm Ar	43 [6]	
Na ₂ B ₄ O ₇ :NaOH:MgH ₂ (1:2:8)	planetary ball 2750 rpm, 1 h, 1 atm Ar	64 [6]	
Na ₂ B ₄ O ₇ :Na ₂ O ₂ :MgH ₂	planetary ball 2750 rpm, 1 h, 1 atm Ar	67 [6]	
(1:1:9.24)			
Na ₂ B ₄ O ₇ :Na ₂ CO ₃ :MgH ₂	planetary ball 2750 rpm,1 h, 1 atm Ar	78 [6]	
(1:1:9.24)			
NaBO ₂ :MgH ₂ (1:2.8)	shaker mill 1080 cpm, 6 h, 1 atm Ar	76 [7]	
NaBO ₂ :MgH ₂ (1:2.6)	shaker mill 1080 cpm, 11 h, 1 atm Ar	70 [8]	
NaBO ₂ :MgH ₂ (1:2.07)	shaker mill 1230 cpm, 2 h, 200 kPa Ar	71 [9]	
NaBO ₂ :MgH ₂ (1:2.7)	shaker mill 1200 cpm, 12 h, 3 MPa H_2 ,	89 [10]	
	0.15 mL CH ₃ OH		
Na:B ₂ O ₃ :MgH ₂ (2:1.2:5.2)	shaker mill 1080 cpm, 11 h,1 atm Ar	25 [11]	
NaBO ₂ ·2H ₂ O:MgH ₂ (1:5)	shaker mill 1200 cpm,15 h, 1 atm Ar	90.0 [12]	
NaBO ₂ ·2H ₂ O:Mg (1:5)	shaker mill 1200 cpm, 15 h,1 atm Ar	68.55 [13]	
$Na_2B_4O_7{\cdot}10H_2O{:}Na_2CO_3{:}Mg$	shaker mill 1000 cpm, 30 h, 1 atm Ar	78.9 [14]	
(1:1:24.75)			
$Na_2B_4O_7{\cdot}10H_2O{:}NaH{:}Mg_{17}Al_1$	shaker mill 1200 cpm, 20 h, 1 atm Ar	85.2 (in this	
₂ (1:4:0.850)		work)	

Table S2. Yields of NaBH₄ synthesized by various methods.

[a] The yield was determined according to the following equation:

$$Yield (NaBH_4) = \frac{obtained mass NaBH4}{theoretical mass NaBH4} \times 100\%$$

The theoretical amount was based on a full conversion meaning that 1 mole $Na_2B_4O_7$ is converted to 4 mole of $NaBH_4$.

Method	Cost (US\$/ ton)
Ball milling Mg ₁₇ Al ₁₂ , NaH, and Na ₂ B ₄ O ₇ ·5H ₂ O	15,027 ^{a)}
Ball milling MgH ₂ and NaBO ₂	280670 ^{b)}
Ball milling MgH ₂ , Na ₂ CO ₃ , and Na ₂ B ₄ O ₇	262,015 ^{c)}

Table S3. Cost of raw materials

The calculation does not include the cost of raw materials $Na_2B_4O_7$, $NaBO_2$ or $Na_2B_4O_7$. $10H_2O$, since they can be easily recycled from hydrolytic product of $NaBH_4$ or obtained from borax mineral. All the prices of raw materials are from a commercial company.

^{a)} The calculation is based on the highest yield of 85.2% obtained via ball milling $Mg_{17}Al_{12}$, NaH, and Na₂B₄O₇·5H₂O mixtures (in 0.850:4:1 molar ratio). 4.86 tons of $Mg_{17}Al_{12}$ and 0.74 tons of NaH are needed to produce 1 ton NaBH₄. For the price, it is \$2,420/ton for $Mg_{17}Al_{12}$ and \$4413/ton for NaH. Then the total cost of raw materials is \$15,027;

^{b)} The calculation is based on the highest yield of 63% obtained via ball milling MgH₂ and NaBO₂ mixtures (in 2:1 molar ratio) [7]. 2.21 tons of MgH₂ are needed to produce 1 ton of NaBH₄. For the price, it is \$127,000/ton for MgH₂. The total cost of raw materials is \$280,670;

^{c)} The calculation is based on a 78% yield when MgH₂, Na₂CO₃, and Na₂B₄O₇ with a ratio of 9.24:1:1 is ball milled for 1 h [6]. 2.061 tons of MgH₂ and 0.898 tons of Na₂CO₃ are needed to produce 1 ton NaBH₄. The price of Na₂CO₃ is \$298, so the total cost of raw materials is \$262,015.

References

- [1] S. Lou, L. Jia, X. Guo, W. Wu, L. Gao, H. Wu, et al. RSC Adv. 2016, 6, 6921-6923.
- [2] T. Wan, P. Yu, S. Wang, Y. Luo, *Energy Fuels* 2009, 23, 1089-1092.
- [3] Y. Kojima, T. Haga, Int. J. Hydrogen Energy 2003, 28, 989-993.
- [4] B. H. Liu, Z. P. Li, J. K. Zhu, J. Alloys Compd. 2009, 476, L16-L20.
- [5] İ. Kayacan, Ö. M. Doğan, B. Z. Uysal, Int. J. Hydrogen Energy 2011, 36, 7410-7415.
- [6] Z. P. Li, N. Morigazaki, B. H. Liu, S. Suda, J. Alloys Compd. 2003, 349, 232-236.
- [7] C. L. Hsueh, C. H. Liu, B. H. Chen, C. Y. Chen, Y. C. Kuo, K. J. Hwang, J. R. Ku, *Int. J. Hydrogen Energy* 2009, 34, 1717-1725.
- [8] Ç. Çetin, G. Metin, Renew. Energy 2010, 35, 1895-1899.
- [9] L. Kong, X. Cui, H. Jin, J. Wu, H. Du, T. Xiong, Energy Fuels 2009, 23, 5049-5054.
- [10] C. Lang, Y. Jia, J. Liu, H. Wang, L. Ouyang, M. Zhu, X. Yao, Int. J. Hydrogen Energy 2017, 42, 13127-13135.
- [11] Ç. Çakanyildirim, M. Gürü, *Energy Sources, Part A Recovery, Util. Environ. Eff.***2011** 33, 1912-1920.
- [12] W. Chen, L. Z. Ouyang, J. W. Liu, X. D. Yao, H. Wang, Z. W. Liu, M. Zhu, J. Power Sources 2017, 359, 400-407.
- [13] L. Ouyang, W. Chen, J. Liu, M. Felderhoff, H. Wang, M. Zhu, *Adv. Energy Mater.* 2017, 7, 1700299.
- [14] Y. Y. Zhu, L. Z. Ouyang, H. Zhong, H. Wang, H. Y. Shao, Z. G. Huang, Zhu. M,

Angew. Chem. Int. Ed. 2020, 59, 8623-8629.