Supporting information for

Organic/Inorganic hydrogels by simultaneous self-assembly and mineralization of aromatic short-peptides

Mari C. Mañas-Torres,^a Gloria B. Ramírez Rodríguez,^{*b} José I. García-Peiro,^c Belén Parra Torrejón,^b Juan M. Cuerva,^a Modesto T. López-López,^{d,e} Luis Álvarez de Cienfuegos^{*a,e} and José M. Delgado-López^b

^a Dpto de Química Orgánica, Facultad de Ciencias, Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente, Universidad de Granada (UGR), 18071-Granada, Spain. E-mail: lac@ugr.es

^b Dpto de Química Inorgánica, Facultad de Ciencias, Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente (UGR). Email: gloria@ugr.es

^c Instituto de Nanociencia y Materiales de Aragón, CSIC-Universidad de Zaragoza, 50009, Zaragoza, y Departamento de Ingeniería Química y Tecnología Medioambiental (IQTMA), Universidad de Zaragoza, 50018 Zaragoza.

^d Dpto de Física Aplicada, Facultad de Ciencias, (UGR).

^e Instituto de Investigación Biosanitaria ibs.GRANADA, Spain.

Table of contents

Fig. S1.

Fig. S2.

Fig. S3.

Fig. S4.

Fig. S5.

- Fig. S6.
- Fig. S7.
- Fig. **S8**.

Table S1.

References

Figure S1. TEM images of HA (a), Fmoc-AA (b) and Fmoc-FF(c) samples. Scale bar= 200 nm.

Figure S2. (a) XRD patterns of FF, FF-HA, AA-HA and HA samples. (b) TGA (black line) and DTG curve (blue line) curve of control FF xerogel. XRD patterns of HA, FF-HA and AA-HA samples display two broad Bragg peaks at around 26° and 32° (2 θ) ascribed to poor crystalline hydroxyapatite (HA, ASTM card file No 09-432). XRD pattern of control FF xerogel confirmed the presence of calcite (CaCO₃, ASTM card file No. 5-586) which corresponds with the 17% of weight remained in TGA curve after heating at 900 °C.

Figure S3. Pictures of inverted vials of hybrid hydrogels at several nominal HA/FF weight ratios (i.e., 80/20, 60/40, 40/60 and 20/80), Fmoc-FF hydrogel and HA suspension.

Figure S4. HAADF-STEM image and energy-dispersive X-ray (XED) spectrum of selected area of nominal 40/60 hybrid hydrogels.

Figure S5. XRD patterns of HA and hybrid xerogels synthesized at nominal HA/FF weight ratios: 20/80, 40/60, 60/40 and 80/20. Broad peaks at *ca*. 26° and 32° (2θ) are ascribed to poor crystalline hydroxyapatite (HA, ASTM card file No 09-432).

Figure S6. TEM images of Fmoc-FF hydrogels mineralized at increasing calcium concentrations (mM): 8.3 (a-b), 11.1 (c-d) and 33.3 (e-f).

Figure S7. Linear fit of calcium concentration vs storage modulus.

Figure S8. (a) Gelation kinetics of hybrid peptide hydrogel based on different Ca/P molar ratio.

Table S1. Comparison of values of G' corresponding to the LVR of the present work with these obtained in a previous work¹ for Fmoc-FF gels not containing HA.

Fmoc-FF	Fmoc-FF	Ratio of Fmoc-	Ratio G' corresponding
concentration	concentration	FF concentration	to LVR (present work /
(present work)	(previous work)*	(present work /	previous work)
		previous work)	
2.08 mM	2.5 mM	0.83	2.74 ± 0.05
4.68 mM	5 mM	0.94	2.88 ± 0.05
12.47 mM	10 mM	1.25	1.25 ± 0.05

References

 Mañas-Torres, M. C.; Gila-Vilchez, C.; González-Vera, Juan A. Conejero-Lara, F.; Blanco, V.; Cuerva, J. M.; Lopez-Lopez, Modesto T. Orte, A.; Alvarez de Cienfuegos, L. In Situ Real-Time Monitoring the Mechanism of Self-Assembly of Short Peptide Supramolecular Polymers. *Mater. Chem. Front.* 2021, 5, 5452-5462.