Electronic Supplementary Information:

Enhancement of Band Gap and Birefringence Induced from π -Conjugated Chromophore with "Tail Effect"

Wenbing Cai,^a Jiongquan Chen,^a Shilie Pan^{*a} and Zhihua Yang^{*a}

^aCAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang

Technical Institute of Physics & Chemistry, CAS; Xinjiang Key Laboratory of Electronic

Information Materials and Devices, Urumqi 830011, China

Compounds	ICSD code	Space group	Cell Volume	Density of [CO ₃] ²⁻ /[HCO ₃] ⁻
Na ₂ CO ₃	95549	C2/m	276.43	0.01447
NaHCO ₃	18183	$P2_{1}/c$	254.65	0.01571
K_2CO_3	10191	$P2_{1}/c$	375.79	0.01064
KHCO ₃	2076	$P2_{1}/a$	300.93	0.01329
Rb ₂ CO ₃	14155	$P2_{1}/c$	431.56	0.00927
RbHCO ₃	243962	C^{1}	334.58	0.01196
Cs_2CO_3	14156	$P2_{1}/c$	508.95	0.00786
CsHCO ₃	300259	$P2_1/n$	364.36	0.01098
K ₃ CO ₃ F	660288	$R^{3}c$	781.16	0.00768
$K_2HCO_3F \cdot H_2O$	188659	$P2_{1}/m$	279.28	0.00716
Na ₃ BO ₃	1351	$P2_{1}/c$	341.09	0.01173
Na ₂ HBO ₃	27211	Pnma	298.83	0.01339
Ca ₃ (C ₃ N ₃ O ₃) ₂	428357	R3c	1399.03	0.00858
Rb ₂ (HC ₃ N ₃ O ₃)	131051	Cmcm	652.63	0.00613

Table S1 ICSD code, space group, cell volume and group density of template compounds.

Table S2 Static polarization components, polarizability anisotropy $\Delta \alpha$ and HOMO-LUMO energy gap of the $[CO_3]^{2-}$, $[BO_3]^{3-}$, $[C_3N_3O_3]^{3-}$, $[HCO_3]^-$, $[HBO_3]^{2-}$ and $[HC_3N_3O_3]^{2-}$.

Units	Static polarization						Δα	HOMO-LUMO energy
	xx	xy	уу	XZ	yz	ZZ	Δи	gap
[HCO ₃] ⁻	25.92	-3.59	22.53	0.00	0.00	8.56	17.12	7.04
[CO ₃] ²⁻	21.73	0.00	21.72	0.00	0.00	8.94	12.79	7.34
[HBO ₃] ²⁻	26.48	-4.23	26.48	0.00	0.00	12.81	15.51	6.62
$[BO_3]^{3-}$	23.54	0.00	23.53	0.00	0.00	14.09	9.44	7.84
$[HC_3N_3O_3]^{2-}$	22.12	0.00	67.80	0.00	0.00	82.49	54.53	6.37
$[C_3N_3O_3]^{3-}$	74.40	0.00	74.39	0.00	0.00	22.48	51.91	6.58

Compounds	[CO ₃] ^{2–} /[HCO ₃] [–] groups and A-site cationic polyhedra	Δho	Contribution	
Na ₂ CO ₃	[CO ₃] ²⁻	0.03139	98.24 %	
	$Na(1)O_6$ and $Na(2)O_6$ and $Na(3)O_9$	0.00056	1.76 %	
K ₂ CO ₃	[CO ₃] ^{2–}	0.01913	92.28 %	
	K(1)O ₉ and K(2)O ₆	0.00160	7.72 %	
Rb ₂ CO ₃	[CO ₃] ²⁻	0.00733	104.12 %	
	$Rb(1)O_9$ and $Rb(2)O_6$	-0.00029	-4.12 %	
Cs_2CO_3	[CO ₃] ²⁻	0.01212	87.77 %	
	CsO ₉	0.00169	12.23 %	
K ₃ CO ₃ F	[CO ₃] ²⁻	0.01389	95.66 %	
	KO ₅ F ₂	0.00063	4.34 %	
NaHCO ₃	$[HCO_3]^-$	0.03912	101.33 %	
	NaO_6	-0.00052	-1.33 %	
KHCO ₃	$[HCO_3]^-$	0.03391	102.82 %	
	KO_8	-0.00093	-2.82 %	
RbHCO ₃	$[HCO_3]^-$	0.03140	98.91 %	
	RbO_8	0.00035	1.09 %	
CsHCO ₃	$[HCO_3]^-$	0.02622	97.63 %	
	CsO ₉	0.00064	2.37 %	
$K_2HCO_3F \cdot H_2O$	[HCO ₃] ⁻	0.02584	77.19 %	
	KO ₅ F ₂	-0.00049	-1.46 %	
	H_2O	0.00813	24.27 %	

Table S3 The contribution of $[CO_3]^{2-}$ or $[HCO_3]^{-}$ groups and A-site cationic polyhedra to birefringence by REDA analysis method.

Compounds	Band gap (GGA /eV)	Band gap (HSE06 /eV)	Birefringence @ 1064 nm	A-site cationic polyhedral and anion groups	Δρ
Na ₃ BO ₃	2.83	4.65	0.022	Na(1)O ₅ , Na(2)O ₅ , Na(3)O ₄	-0.00026
			0.025	$[BO_3]^{3-}$	0.01130
Na ₂ HBO ₃	3.75	5.49	0.084	Na(1)O ₅ , Na(2)O ₆	0.00273
				[HBO ₃] ²⁻	0.02537
Ca ₃ (C ₃ N ₃ O ₃) ₂	3.97	5.32	0.368	CaO_4N_2	0.00321
				$[C_3N_3O_3]^{3-}$	0.03137
Rb ₂ (HC ₃ N ₃ O ₃)	4.54	6.05	0.381	RbO ₆ N ₂	0.00042
				$[HC_3N_3O_3]^{2-}$	0.04341

Table S4 The band gaps, birefringence and $\Delta \rho$ of Na₃BO₃, Na₂HBO₃, Ca₃(C₃N₃O₃)₂ and Rb₂(HC₃N₃O₃).

Figure S1 The HOMO-LUMO energy gaps, frontier molecule orbitals and energy levels of $[BO_3]^{3-}$, $[HBO_3]^{2-}$, $[C_3N_3O_3]^{3-}$ and $[HC_3N_3O_3]^{2-}$.

Figure S2. The GGA electronic band structures of Na_2CO_3 (a), $NaHCO_3$ (b), K_2CO_3 (c), $KHCO_3$ (d), Rb_2CO_3 (e), $RbHCO_3$ (f), Cs_2CO_3 (g), $CsHCO_3$ (h), K_3CO_3F (i), and $K_2HCO_3F \cdot H_2O$ (j).

Figure S3 The UV-Vis-NIR diffuse reflectance spectra of Na₂CO₃ (a) and NaHCO₃ (b).

Figure S4. The partial density of states (PDOS) of Na₂CO₃ (a), NaHCO₃ (b), Rb₂CO₃ (c), RbHCO₃ (d), Cs₂CO₃ (e), CsHCO₃ (f), K₃CO₃F (g), and K₂HCO₃F·H₂O (h).