Electronic Supportive Information

Robust Charge Carrier Engineering Via Plasmonic effect and Conjugated II-Framework on Au loaded ZnCr-LDH/RGO Photocatalyst towards H₂ and H₂O₂ Production

Sriram Mansingh[#], Dipti Prava Sahoo[#], Lekha Paramanik, Mitarani Sahoo and Kulamani Parida*

Centre for Nano Science and Nano Technology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar-751030, Odisha, India

* Corresponding author

E-mail: paridakulamani@yahoo.com,

kulamaniparida@soa.ac.in

S1. Calculation of Number of H_2 evolved (theoretical) and apparent conversion efficiency

(ACE).

(a) Number of H_2 molecules generated over Au@LDH/RGO composite was calculated by the reported literature of Deka *et al.*:[3]

Number of H₂ produced from Au@LDH/RGO composite:

Volume of H_2 generated during the reaction period = 20.6 ml = 0.0206 L

Form standard gas equation, we have **PV= nRT**

n (no. of H₂ gas evolved) = 0.0206 L x 1 atm / $0.082 \text{ L.atm mol}^{-1} \text{ K}^{-1} \text{ x 298 K}$

The corresponding amount of hydrogen in moles/2h = 0.000843 moles/2h

As we know, 1 mole of H_2 gas = 6.023 x 10²³ molecules of H_2

Therefore, 0.000843 moles = $6.023x \ 10^{23} \ x \ 0.000843$ H₂ molecules

H₂ molecule (*per cm² per s*) = (6.023 x 10^{23} x 0.000843) / (14.13 x 2 h x 60 min x 60 s)

$= 4.9903 \text{ x } 10^{15} \text{ cm}^{-2} \text{s}^{-1}$

Number of H₂ molecule (*per s*) = $(6.023 \times 10^{23} \times 0.000843) / (2 \text{ h x } 60 \text{ min x } 60 \text{ s})$

$= 7.0513 \text{ x } 10^{16} \text{ s}^{-1}$

(b) Apparent conversion efficiency (ACE) of Au@LDH/RGO hybrid for H_2 production (918.76 µmol/2h in methanol solution) under 125W Hg lamp irradiation was calculated by following the below given formula. [2]

 $\Rightarrow ACE = \frac{Stored chemical energy (SCE)}{Incident photon intensity (IPI)}$

SCE= Number of H₂ generated (moles /sec) * Heat of combustion of H₂ (kJ/mole)

 $= 0.127 * 10^{-6} \text{ mole/sec } *285.8 * 10^{3} \text{ J/mole}$

=0.0362 W

IPI= Intensity of 125 W Hg lamp * Distance between lamp and reaction suspension surface * spherical surface area on which light is irradiated $(2\pi r)$

 $= 0.027 \times 9 \times 2 \times 3.14 \times (1.5)^2$

= 0.3433W

 $\Rightarrow ACE = \frac{SCE}{ILI}$

 $\Rightarrow \frac{0.0362W}{0.3433W} = 10.5\%$

Fig. S2 Picture of photoreactor for H₂O₂ generation.

S3. Calculation of solar to chemical conversion efficiency (SCC %).

Solar to chemical conversion efficiency (SCC %) of Au@LDH/RGO composite towards H_2O_2 production under 250 W Hg lamp was calculated by following the below mention equation:

$$SCC \% = \frac{([\Delta G^{\circ} for H_2 O_2 production (J/mol)] \times [H_2 O_2 formed (mol)])}{([Input energy (W)] \times [reaction time(s)])} \times 100$$

Input energy = Intensity of used Hg lamp × Distance of lamp from catalyst mixed solution (9 cm) × Surface area of the spherical region on which light is focused ($2\pi r$, r =1.5 cm)

=1.33 × 9 × 2 × 3.14 × (1.5)²
= 169.13 W
$$= \frac{117 \times 10^{3} \times 24.3 \times 10^{-6}}{169.13 \times 2 \times 3600} \times 100$$

Fig. S4 XRD pattern of (a) GO and (b) LDH.

Fig. S5 (a) FESEM image and (b) colour elemental mapping image of Au@LDH/RGO.

Fig. S6 EDAX of (a) LDH/RGO and (b) Au@LDH/RGO.

Fig. S7 XPS plot of LDH (a) C1s, (b) O 1s, (c) Zn 2p and (d) Cr 2p.

Fig. S8 Mott-Schottky graph of LDH at different frequency.

Table	S9.	Table	represen	nts the	comparison	study	for	photocatal	ytic H	evolution	over	present
ternary	/ het	erostru	icture wi	ith the	reported LD	H, RG) ar	nd Au based	l systei	n.		

Photocatalyst	Light irradiation and sacrificial agents	H_2 evolution (µmolg ⁻¹ h ⁻¹)	Ref
rGO/La ₂ Ti ₂ O ₇ /NiFe- LDH	simulated solar irradiation, AM 1.5, TEOA	532.2	1
NiAl-LDH/g- C ₃ N ₄ /Ag ₃ PO ₄	250 Wquartztungstenhalogenlamp($\lambda \ge 420$),CH ₃ OH	268	2
CdIn ₂ S ₄ /In(OH) ₃ /Ni Cr-LDH	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1093	3

Au–Pd/rGO/TiO ₂	300 W Xe lamp (λ≥420), CH ₃ OH	21500	4
ZnIn ₂ S ₄ -rGO- CuInS ₂	150W Xe lamp, (λ≥420), Na ₂ S/Na ₂ SO ₃	510	5
rGO/CuFe ₂ O ₄ -TiO ₂	250 W Xe lamp, ($\lambda \ge 420$), glycerol- water mixture	35981	6
InVO ₄ -g-C ₃ N ₄ /rGO	simulated solar irradiation, AM 1.5, TEOA	7449	7
TiO ₂ -Ag-rGO	280 W Xe lamp, (λ≥420), CH ₃ OH	593.56	8
Au@LDH/RGO	125 W Xe lamp, (λ≥420), CH ₃ OH	22950	Present work

Table S10. Table represents the comparison study for photocatalytic H_2O_2 evolution over present ternary heterostructure with the reported RGO and Au based system.

Photocatalyst	Light irradiation and sacrificial agents	H ₂ O ₂ production	Ref
CN/rGO@black phosphorus quantum dot	300 W arc Xe lamp (420< λ<780 nm)	181.69 μmol/L, 3h	9
CoPi/rGO/TiO ₂	300 W Xe arc lamp ($\lambda \ge 320$ nm), 2- propanol	850 μmol, 3h	10
TiO ₂ /rGO/Carbon dots	simulated solar irradiation AM 1.5, 2-propanol	350 μmol, 1h	11

TiO ₂ /WO ₃ /rGO	simulated solar irradiation AM 1.5, 2-propanol	270 μmol, 1h	12
Au/SnO ₂ -TiO ₂	UV light, alcohol	15000 μmol, 3h	13
Au@LDH/RGO	125 W Xe lamp, (λ≥420), CH ₃ OH	24.3 µmol, 2h	Present Work

Fig. S11 XRD plot of Au@LDH/RGO sample after and before use.

References

- R. Boppella, C.H. Choi, J. Moon and D.H. Kim, Spatial charge separation on strongly coupled 2D-hybrid of rGO/La₂Ti₂O₇/NiFe-LDH heterostructures for highly efficient noble metal free photocatalytic hydrogen generation. *Appl. Catal. B*, 2018, 239, 178-186.
- S. Megala, P. Ravi, P. Maadeswaran, M. Navaneethan, M. Sathish and R. Ramesh, The construction of a dual direct Z-scheme NiAl LDH/gC₃N₄/Ag₃PO₄ nanocomposite for enhanced photocatalytic oxygen and hydrogen evolution. *Nanoscale Adv.*, 2021, **3**, 2075-2088.
- R. Fu, Y. Gong, C. Li, L. Niu and X. Liu, CdIn₂S₄/In (OH) ₃/NiCr-LDH Multi-interface heterostructure photocatalyst for enhanced photocatalytic H₂ evolution and Cr (VI) reduction. *Nanomaterials*, 2021, **11**, 3122.
- B. Tudu, N. Nalajala, K. P. Reddy, P. Saikia and C.S. Gopinath, Electronic integration and thin film aspects of Au–Pd/rGO/TiO₂ for improved solar hydrogen generation. *ACS Appl. Mater. Interfaces*, 2019, **11**, 32869-32878.
- A. Raja, N. Son, M. Swaminathan and M. Kang, Facile synthesis of sphere-like structured ZnIn₂S₄-rGO-CuInS₂ ternary heterojunction catalyst for efficient visible-active photocatalytic hydrogen evolution. *J. Colloid Interface Sci.*, 2021, 602, 669-679.
- H.Y. Hafeez, S.K. Lakhera, P. Karthik, M. Anpo and B. Neppolian, Facile construction of ternary CuFe₂O₄-TiO₂ nanocomposite supported reduced graphene oxide (rGO) photocatalysts for the efficient hydrogen production. *Appl. Surf. Sci.*, 2018, 449, 772-779.
- H.Y. Hafeez, S.K. Lakhera, M.V. Shankar and B. Neppolian, Synergetic improvement in charge carrier transport and light harvesting over ternary InVO₄-g-C₃N₄/rGO hybrid nanocomposite for hydrogen evolution reaction. *Int. J. Hydrog. Energy*, 2020, 45, 7530-7540.
- Z. Wang, Z.X. Low, X. Zeng, B. Su, Y. Yin, C. Sun, T. Williams, H. Wang and X. Zhang, Vertically-heterostructured TiO₂-Ag-rGO ternary nanocomposite constructed with {001} facetted TiO₂ nanosheets for enhanced Pt-free hydrogen production. *Int. J. Hydrog. Energy*, 2018, 43, 1508-1515.
- J. Xiong, X. Li, J. Huang, X. Gao, Z. Chen, J. Liu, H. Li, B. Kang, W. Yao and Y. Zhu, CN/rGO@ BPQDs high-low junctions with stretching spatial charge separation ability for photocatalytic degradation and H₂O₂ production. *Appl. Catal. B*, 2020, **266**, 118602.

- G.H. Moon, W. Kim, A.D. Bokare, N.E. Sung and W. Choi, Solar production of H₂O₂ on reduced graphene oxide–TiO₂ hybrid photocatalysts consisting of earth-abundant elements only. *Energy Environ. Sci.*, 2014, 7, 4023-4028.
- X. Zeng, Z. Wang, N. Meng, D.T. McCarthy, A. Deletic, J.H. Pan and X. Zhang, Highly dispersed TiO₂ nanocrystals and carbon dots on reduced graphene oxide: Ternary nanocomposites for accelerated photocatalytic water disinfection. *Appl. Catal. B*, 2017, 202, 33-41.
- X. Zeng, Z. Wang, G. Wang, T.R. Gengenbach, D.T. McCarthy, A. Deletic, J. Yu and X. Zhang, Highly dispersed TiO₂ nanocrystals and WO₃ nanorods on reduced graphene oxide: Z-scheme photocatalysis system for accelerated photocatalytic water disinfection. *Appl. Catal. B*, 2017, **218**, 163-173.
- K. Takise, A. Sato, S. Ogo, J.G. Seo, K.I. Imagawa, S. Kado and Y. Sekine, Lowtemperature selective catalytic dehydrogenation of methylcyclohexane by surface protonics. *RSC Adv.*, 2019, *9*, 27743-27748.