Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2021

Supporting Information (SI):

Molybdenum and cobalt co-doped VC nanoparticles

encapsulated in nanocarbon as efficient electrocatalysts for

hydrogen evolution reaction

Xiaoyi Lia, Jianfeng Huang*a, Liangliang Feng*a, Danyang Hea, Zixuan Liub,

Guodong Li^c, Ning Zhang^a, Yongqiang Feng^a, Liyun Cao^{*a}

a School of Material Science and Engineering, International S&T Cooperation Foundation of

Shaanxi Province , Xi'an Key Laboratory of Green Manufacture of Ceramic Materials, Key

Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of

Education, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.

b Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD,

UK

c State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of

Chemistry, Jilin University, Changchun 130012, P. R. China.

* Corresponding authors

E-mail: huangif@sust.edu.cn; fengll@sust.edu.cn; 2644245930@qq.com

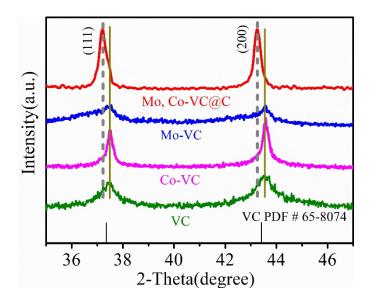


Fig. S1 XRD patterns with zoomed-in image of VC, Mo-VC, Co-VC and Mo, Co-VC @C.

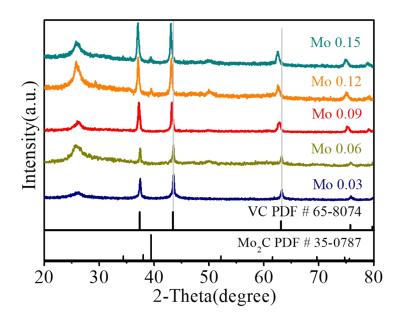
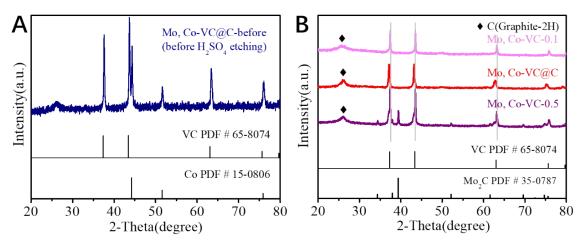



Fig. S2 XRD patterns of samples with different Mo-doping amounts.

Fig. S3 XRD patterns of (A) Mo, Co-VC@C-before (before H₂SO₄ etching); (B) Mo, Co-VC-0.1 (Co 0.1g), Mo, Co-VC@C (Co 0.3 g) and Mo, Co-VC-0.5 (Co 0.5g).

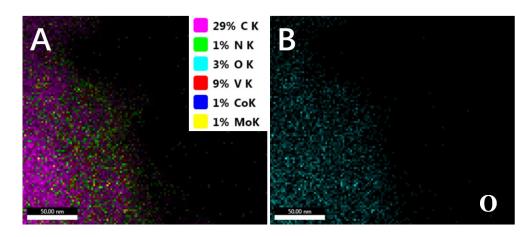


Fig. \$4 (A-B) The elemental mapping images of Mo, Co-VC@C.

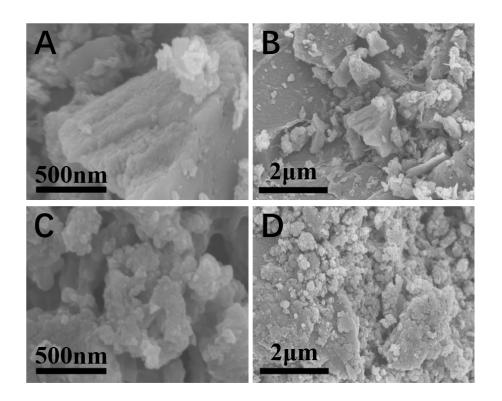
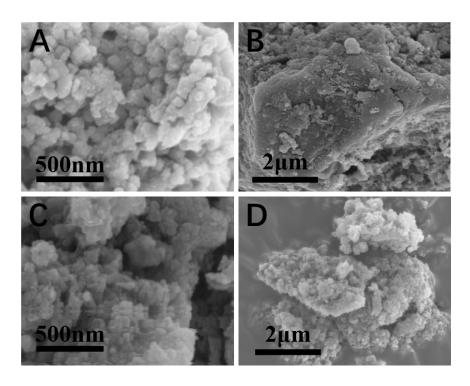



Fig. S5 (A-B) SEM images of VC; (C-D) SEM images of Mo, Co-VC@C.

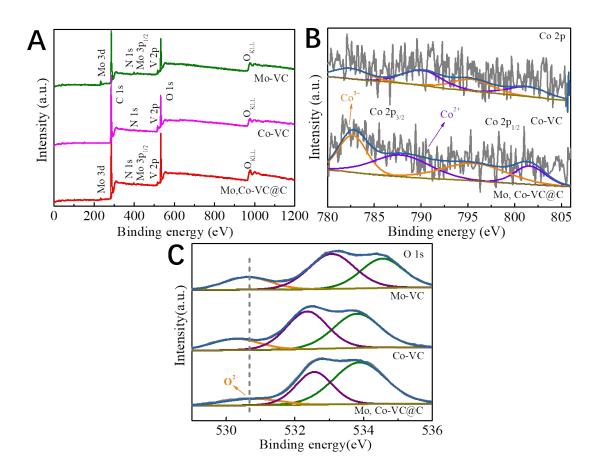

Fig. S6 (A-B) SEM images of Mo, Co-VC-0.1 (Co 0.1g); (C-D) SEM images of Mo, Co-VC-0.5 (Co 0.5g).

Table S1. Peak properties of Mo, Co-VC@C and VC.

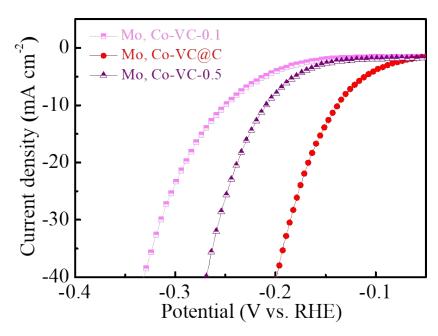

Samples	Peaks	Position, 2 theta (°)	FWHM (radians)	Calculated crystallite size (D, nm)	Calculated average crystallite size (D', nm)	
	Peak1	26.09294	5.8079	1.40408514		
	Peak2	37.22031	17.15777	0.488559966	2 - 001 (- 2 - 1 -	
Mo, Co-	Peak3	43.32616	0.75475	11.32564561		
VC@C	Peak4	62.80551	52.57823	0.177024122	2.798167747	
	Peak5	75.21084	10.25644	0.977700988		
	Peak6	79.14802	4.26596	2.415990661		
VC	Peak1	26.30134	4.80451	1.698037387		
	Peak2	37.44705	0.98751	8.494298705		
	Peak3	43.57816	1.51291	5.655012455	3.510623493	
	Peak4	63.33178	2.06729	4.515032725		
	Peak5	78.75982	29.14271	0.352671431		
	Peak6	78.85275	29.49526	0.348688253		

Table S2. ICP data of Mo, Co-VC@C.

Elements	The mass percentage (%)	
Mo	3.205	
Co	0.017	
\mathbf{V}	15.020	

Fig. S7 (A) XPS survey spectra of Mo-VC, Co-VC and Mo, Co-VC@C; (B) Co 2p XPS spectrum of Co-VC and Mo, Co-VC@C; and (C) O 1s XPS spectrum of Mo-VC, Co-VC and Mo, Co-VC@C.

Fig. S8 HER Polarization curves of Mo, Co-VC-0.1 (Co 0.1g), Mo, Co-VC@C (Co 0.3 g) and Mo, Co-VC-0.5 (Co 0.5g).

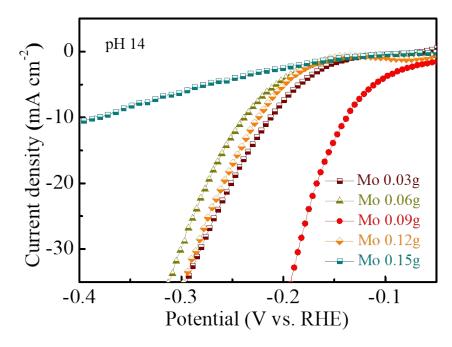


Fig. S9 Polarization curves of samples with different Mo-doping amount.

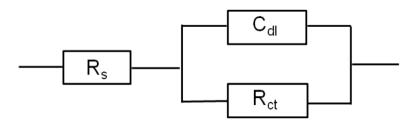
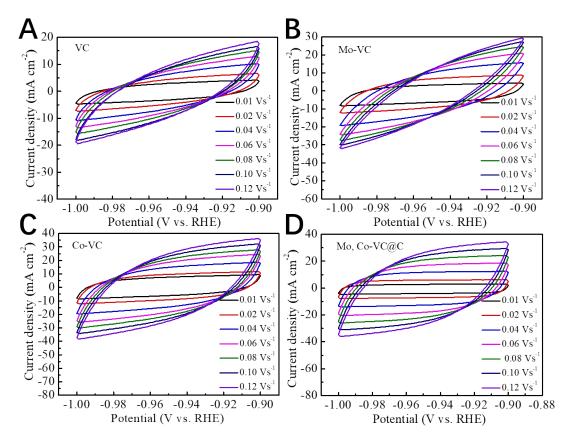
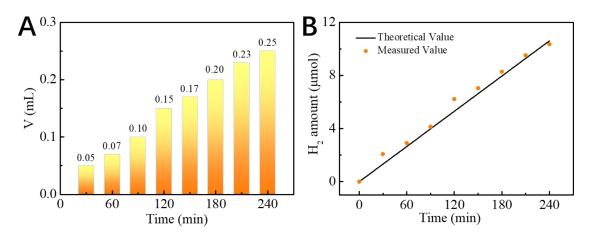




Fig. S10 Electrical equivalent circuit used to simulate the Nyquist plots in Fig. 5C, where R_s is the electrolyte resistance, R_{ct} is the charge-transfer resistance, and C_{dl} represents the double-layer capacitance.

Fig. S11 CV curves of (A) VC, (B) Mo-VC, (C) Co-VC and (D) Mo, Co-VC@C at different scan rates from 10 to 120 mV/s in 1 M KOH.

Fig. S12 (A) The volume of the hydrogen-produced gas from the HER of Mo, Co-VC@C was recorded every 30 minutes; (B) Hydrogen production efficiency for HER under potentiostatic electrolysis with Mo, Co-VC@C at overpotential η_{10} = 233 mV at pH 14.

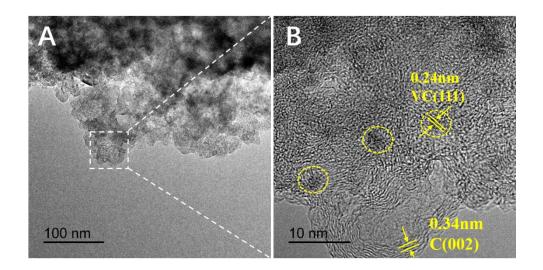


Fig. S13 (A-B): TEM and HRTEM images of Mo, Co-VC@C after the stability test of I-t curve for 110 h at pH 14.

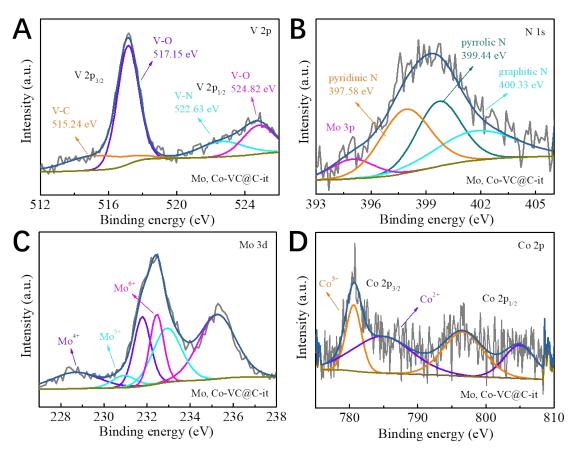


Fig. S14 The XPS spectrum of Mo, Co-VC@C after HER durability test at pH 14: (A) V 2p, (B) N 1s, (C) Mo 3d, (D) Co 2p.

 Table S3. Comparison of HER performance of reported TMCs electrocatalysts.

Catalyst	Electrolyte	Current density(j)	Overpotential at the corresponding <i>j</i>	Reference
Mo, Co- VC@C	1 М КОН	10 mA/cm ²	137 mV	This work
VC/NC	1 M KOH 0.5 M H ₂ SO ₄	10 mA/cm ² 10 mA/cm ²	142 mV 76 mV	J. Power Sources 2021, 490, 229551
VC@NC/CC	1 M KOH 0.5 M H ₂ SO ₄	100 mA/cm ² 100 mA/cm ²	238 mV 461 mV	ChemSusChem 2020 , 13, 3671-3678
VC@NCNT	1 M KOH 0.5 M H ₂ SO ₄	10 mA/cm ² 10 mA/cm ²	159 mV 161 mV	Nanoscale 2018 , 10, 14272-14279
Mo ₂ C/VC @C	0.5 M H ₂ SO ₄	10 mA/cm ²	122 mV	Nano Energy 2019 , 60, 520-526
Mo ₂ C/C	1 M KOH 0.5 M H ₂ SO ₄	10 mA/cm ² 10 mA/cm ²	125 mV 180 mV	ACS Appl. Mater. Inter. 2017 , 9, 41314- 41322
Mo ₂ C/KB	0.5 M H ₂ SO ₄	10 mA/cm ²	180 mV	ACS Sustainable Chem. Eng. 2018 , 6, 983–990
MoC/NPC @CNTs	0.5 M H ₂ SO ₄	10 mA/cm ²	175 mV	Sustain. Energy Fuels 2020, 4, 407
Co ₃ Mo ₃ C	1 M KOH	1 mA/cm ² 10 mA/cm ²	72 mV 169 mV	Inorg. Chem. Front. 2019,6, 940-947
Co/Mo ₂ C	1 М КОН	10 mA/cm ²	157 mV	Int. J. Hydrogen Energy 2020 , 45, 21221-21231
Ni-Mo/WC	1 M KOH	10 mA/cm ²	134 mV	Int. J. Hydrogen Energy 2021 , 46, 22813-22831
W ₂ C-HS	0.5 M H ₂ SO ₄	10 mA/cm ² 100 mA/cm ²	153 mV 264 mV	ACS Omega 2019 , 4, 4185–4191