Supplementary Information

Taming salophen in rare earth metallocene chemistry

Ernesto Castellanos, Florian Benner, and Selvan Demir*

Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, USA

*Correspondence to: sdemir@chemistry.msu.edu (S.D.)

Inorg. Chem. Front.

Table of Contents

1	X-Ray Crystallography.	S 4
	Table S1 . Crystallographic Data and Structural Refinements of (Cp* ₂ RE) ₂ (μ- ^{tBu} salophen)•3tol, RE = Gd (1), Dy (2), and Y (3).	S4
	Fig. S1 . Structure of (Cp* ₂ Gd) ₂ (μ- ^{<i>t</i>Bu} salophen), 1 .	S5
	Fig. S2 . Structure of $(Cp_2^*Dy)_2(\mu^{-tBu}salophen)$, 2 .	S6
	Fig. S3 . Structure of $(Cp^*{}_2Y)_2(\mu - {}^{tBu}salophen)$, 3 .	S7
2	NMR Spectroscopy.	S8
	Fig. S4 . ¹ H NMR spectra of H_2^{tBu} salophen and K_2^{tBu} salophen.	S8
	Fig. S5 . ¹ H NMR spectrum of (Cp* ₂ Gd) ₂ (μ- ^{<i>t</i>Bu} salophen), 1 .	S9
	Fig. S6 . ¹ H NMR spectrum of (Cp* ₂ Dy) ₂ (μ- ^{<i>t</i>Bu} salophen), 2 .	S9
	Fig. S7 . ¹ H NMR spectrum of (Cp* ₂ Y) ₂ (μ- ^{tBu} salophen), 3 .	S10
	Fig. S8 . ${}^{1}H-{}^{1}H$ COSY spectrum of $(Cp^{*}{}_{2}Y)_{2}(\mu-{}^{tBu}salophen)$, 3 .	S11
	Fig. S9 . Enlarged ¹ H– ¹ H COSY spectrum of $(Cp_{2}^{*}Y)_{2}(\mu^{-tBu}salophen)$, 3 .	S11
	Fig. S10 . ¹³ C NMR spectrum of (Cp* ₂ Y) ₂ (μ- ^{<i>t</i>Bu} salophen), 3 .	S12
	Fig. S11 . ¹ H– ¹³ C HSQC spectrum of $(Cp_{2}Y)_{2}(\mu$ - ^{tBu} salophen), 3 .	S13
	Fig. S12 . ¹ H– ¹³ C HMBC spectrum of $(Cp_{2}^{*}Y)_{2}(\mu - t^{Bu}salophen)$, 3 .	S14
	Fig. S13 . Enlarged ¹ H– ¹³ C HMBC spectrum of $(Cp_{2}^{*}Y)_{2}(\mu$ - ^{tBu} salophen), 3 .	S14
	Fig. S14 . ⁸⁹ Y NMR spectrum of $(Cp_2^*Y)_2(\mu^{-tBu}salophen)$, 3 .	S15
	Fig. S15 . ⁸⁹ Y NMR spectrum of (Cp* ₂ Y) ₂ (μ- ^{tBu} salophen), 3 , referenced to a 3 M solution of YCl ₃ in D ₂ O.	S15
	 Fig. S16. Proton-decoupled ⁸⁹Y NMR (⁸⁹Y-{¹H}) spectrum of (Cp*₂Y)₂(μ-^{tBu}salopher 3, referenced to a 3 M solution of YCl₃ in D₂O. 	n), S16
3	IR Spectroscopy.	S17
	Fig. S17 . FTIR spectrum of $(Cp_2^*Gd)_2(\mu^{-t^{Bu}}salophen)$, 1 .	S17
	Fig. S18 . FTIR spectrum of (Cp* ₂ Dy) ₂ (μ- ^{<i>t</i>Bu} salophen), 2 .	S17
	Fig. S19 . FTIR spectrum of $(Cp_{2}^{*}Y)_{2}(\mu - {}^{tBu}salophen)$, 3 .	S18

4	Magnetic Measurements.	S19
	Fig. S20 . Plots of $\chi_M T$ vs. T for $(Cp^*{}_2Gd)_2(\mu - {}^{tBu}salophen)$, 1 , between 2 and 300 K.	S19
	Fig. S21 . Plots of $\chi_M T$ vs. T for $(Cp^*_2Dy)_2(\mu^{-tBu}salophen)$, 2 , between 2 and 300 K.	S19
	Table S2 . Magnetic exchange coupling constant, <i>J</i> , <i>g</i> values, and residuals from fitting $\chi_M T$ vs. <i>T</i> for 1 .	S20
	Fig. S22 . Field-dependent magnetization and reduced magnetization data for (Cp* ₂ Gd) ₂ (μ- ^{tBu} salophen), 1 .	S20
	Fig. S23. Field-dependent magnetization and reduced magnetization data for (Cp* ₂ Dy) ₂ (μ- ^{fBu} salophen), 2.	S21
	Fig. S24 . Ac field scan for $(Cp_2^*Dy)_2(\mu^{-tBu}salophen)$, 2 , at 2 K.	S21
	Fig. S25. Cole-Cole plots for ac magnetic susceptibility collected from 1.8 to 4.2 K under 1000 Oe applied dc field for (Cp* ₂ Dy) ₂ (μ- ^{fBu} salophen), 2.	S22
	Fig. S26 . Arrhenius plots of relaxation times data for $(Cp^*_2Dy)_2(\mu^{-tBu}salophen)$, 2 .	S23
	Fig. S27 . Variable-field magnetization (M) data for $(Cp^*_2Dy)_2(\mu^{-tBu}salophen)$, 2 .	S24
	Table S3 . Selected multinuclear Gd and Dy complexes containing diamagnetic bridging ligands.	S25
5	Cyclic Voltammetry.	S26
	Fig S28. Cyclic voltammograms of (Cp* ₂ RE) ₂ (μ- ^{tBu} salophen), where RE = Gd (1), Dy (2), and Y (3).	S26
6	EPR Spectroscopy.	S27
	Fig. S29 . Frozen solution X-band EPR spectrum of $(Cp_2^*Gd)_2(\mu^{-tBu}salophen)$, 1 .	S27
7	DFT Calculations.	S28
	Table S4 . Metrical parameters for (Cp* ₂ Y) ₂ (μ- ^{tBu} salophen), 3 , calculated as a neutral singlet using the B3LYP functional.	S28
	Table S5 . Metrical parameters for (Cp* ₂ Y) ₂ (μ- ^{<i>t</i>Bu} salophen), 3 , calculated as a neutral singlet using the hybrid TPSSh functional.	S29
	Table S6 . Metrical parameters for (Cp* ₂ Y) ₂ (μ- ^{<i>t</i>Bu} salophen), 3 , calculated as a neutral singlet using the TPSSTPSS functional.	S30
8	References.	S31

1 X-Ray Crystallography

Table S1	. Crystallographic	Data and Structura	I Refinements	of $(Cp_2^*RE)_2(\mu - t^B)_2$	^u salophen)•3tol,
where RE	E = Gd(1), Dy(2),	and Y (3).			

	Gd (1)	Dy (2)	Y (3)
Empirical formula	$C_{97}H_{130}Gd_2N_2O_2$	$C_{97}H_{130}Dy_2N_2O_2$	$C_{97}H_{130}N_2O_2Y_2$
Formula weight	1670.52	1681.02	1533.84
Temperature/K	100.00(10)	100.00(10)	100.00(10)
Crystal system	Triclinic	triclinic	triclinic
Space group	P-1	P-1	P-1
a/Å	13.29159(18)	13.30200(10)	13.2958(2)
b/Å	17.9159(3)	17.8838(2)	17.8857(3)
c/Å	18.6270(3)	18.6222(2)	18.6124(3)
α/°	74.8284(11)	74.7980(10)	74.7606(14)
β/°	84.4183(11)	84.3290(10)	84.4318(15)
γ/°	87.0897(10)	87.2430(10)	87.1630(14)
Volume/Å ³	4259.29(12)	4252.96(8)	4249.00(12)
Z	2	2	2
$ ho_{calc}{ m g/cm}^3$	1.303	1.313	1.199
µ/mm-¹	1.592	9.648	1.407
F(000)	1740.0	1748.0	1640.0
Crystal size/mm ³	0.118 × 0.091 × 0.07	0.258 × 0.147 × 0.134	0.456 × 0.389 × 0.266
Radiation	Mo K _α (λ = 0.71073)	Cu K _α (λ = 1.54184)	Mo K _α (λ = 0.71073)
2Ø range for data collection/°	4.364 to 62.412	4.938 to 154.584	4.552 to 58.106
Index ranges	-18 ≤ <i>h</i> ≤ 16, -23 ≤ <i>k</i> ≤ 22, -24 ≤ <i>l</i> ≤ 23	-16 ≤ <i>h</i> ≤ 16, -19 ≤ <i>k</i> ≤ 22, -22 ≤ <i>l</i> ≤ 23	-16 ≤ <i>h</i> ≤ 17, -24 ≤ k ≤ 23, -25 ≤ <i>l</i> ≤ 24
Reflections collected	74383	108689	62261
Independent reflections	21857 [<i>R</i> _{int} = 0.0497, <i>R</i> _σ = 0.0491]	17571 [<i>R</i> _{int} = 0.0564, <i>R</i> _σ = 0.0325]	19985 [<i>R</i> _{int} = 0.0275, <i>R</i> _σ = 0.0348]
Data/restraints/parameters	21857/0/962	17571/0/962	19985/0/962
Goodness-of-fit on <i>F</i> ²	1.034	1.061	1.039
Final R indexes [$l > = 2\sigma$	$R_1 = 0.0357,$	$R_1 = 0.0607,$	$R_1 = 0.0450,$
(/)]	$wR_2 = 0.0823$	$wR_2 = 0.1671$	$wR_2 = 0.1043$
Final R indexes [all data]	$R_1 = 0.0483,$ w $R_2 = 0.0874$	$R_1 = 0.0642,$ w $R_2 = 0.1692$	$R_1 = 0.0565,$ w $R_2 = 0.1084$
Largest diff. peak/hole / e Å ⁻³	2.46/-0.77	3.54/-1.90	1.04/-0.41

Fig. S1. Structure of $(Cp_2^*Gd)_2(\mu^{-tBu}$ salophen), **1**, with thermal ellipsoids drawn at 50% probability level. (Top) Front perspective of **1**, with corresponding atom labels. (Bottom) Top perspective of **1**. Maroon, red, blue, and grey ellipsoids represent Gd, O, N, and C atoms, respectively. $(Cp^*)^-$ ligands have been faded for clarity. Hydrogen atoms, and solvent molecules in the crystal lattice, have been omitted for clarity.

Fig. S2. Structure of $(Cp_2^*Dy)_2(\mu^{-t^{Bu}}salophen)$, **2**, with thermal ellipsoids drawn at 50% probability level. (Top) Top perspective of **2**, with corresponding atom labels. (Bottom) Front perspective of **2**. Green, red, blue, and grey ellipsoids represent Dy, O, N, and C atoms, respectively. $(Cp^*)^-$ ligands have been faded for clarity. Hydrogen atoms, and solvent molecules in the crystal lattice, have been omitted for clarity.

Fig. S3. Structure of $(Cp_2^*Y)_2(\mu^{-tBu}$ salophen), **3**, with thermal ellipsoids drawn at 50% probability level. (Top) Top perspective of **3**, with corresponding atom labels. (Bottom) Front perspective of **3**. Pink, red, blue, and grey ellipsoids represent Y, O, N, and C atoms, respectively. $(Cp^*)^-$ ligands have been faded for clarity. Hydrogen atoms, and solvent molecules in the crystal lattice, have been omitted for clarity.

Fig. S4. (**A**) ¹H NMR (500 MHz, C₆D₆, 25 °C) spectrum of H₂^{tBu}salophen. δ (ppm): 14.04 (s, 2H, (C₆H₂)-O*H*), 8.12 (s, 2H, N=C*H*), 7.63 (d, ⁴J_{H-H} = 2.4 Hz, 2H, *p*-*H* (C₆H₂)), 7.05 (d, ⁴J_{H-H} = 2.4 Hz, 2H, *o*-*H* (C₆H₂)), 6.99 (dd, ³J_{H-H} = 5.9, 3.4 Hz, 2H, *m*-C*H* (C₆H₄)), 6.73 (dd, ³J_{H-H} = 5.9, 3.4 Hz, 2H, *o*-*CH* (C₆H₄)), 1.66 (s, 18H, CMe₃), 1.34 (s, 18H, CMe₃). (**B**) ¹H NMR (500 MHz, C₆D₆, 25 °C) spectrum of K₂^{tBu}salophen. δ (ppm): 8.49 (s, 2H, N=C*H*), 7.65 (d, ⁴J_{H-H} = 2.8 Hz, 2H, *p*-C*H* (C₆H₂)), 7.26 (d, ⁴J_{H-H} = 2.8 Hz, 2H, *o*-C*H* (C₆H₄)), 1.78 (s, 18H, CMe₃), 1.49 (s, 18H, CMe₃). The ¹H NMR peaks of the *m*-C*H* (C₆H₄) and *o*-C*H* (C₆H₄) protons overlay with the solvent, and thus, are not assigned.

Fig. S5. ¹H NMR (500 MHz, C₆D₆, 25 °C) spectrum of $(Cp_2^*Gd)_2(\mu^{-tBu}salophen)$, **1**. Due to the paramagnetic nature of **1**, no signals were observed in the ¹H NMR spectrum.

Fig. S6. ¹H NMR (500 MHz, C₆D₆, 25 °C) spectrum of $(Cp_2Dy)_2(\mu$ -^{*t*Bu}salophen), **2**. δ (ppm): 84.98, 77.69, 7.32, 7.00, 1.18, 0.82, -32.09 (br), -51.20 (br), -100.75.

Fig. S7. ¹H NMR (800 MHz, C₆D₆, 25 °C) spectrum of $(Cp^*_2Y)_2(\mu^{-^{HB}}$ salophen), **3**. δ (ppm): 8.88 (d, $^{3}J_{Y-H} = 2.2$ Hz, 2H, N=C*H*), 7.51 (d, $^{4}J_{H-H} = 2.6$ Hz, 2H, *p*-C*H* (C₆H₂)), 7.10 (dd, $^{3}J_{H-H} = 5.8$, 3.4 Hz, 2H, *m*-C*H* (C₆H₄)), 6.92 (d, $^{4}J_{H-H} = 2.6$ Hz, 2H, *o*-C*H* (C₆H₂)), 6.65 (dd, $^{3}J_{H-H} = 5.8$, 3.4 Hz, 2H, *o*-C*H* (C₆H₄)), 2.06 (s, 30H, C₅Me₅), 1.86 (s, 30H, C₅Me₅), 1.72 (s, 18H, CMe₃), 1.14 (s, 18H, CMe₃).

Fig. S8. ${}^{1}H-{}^{1}H$ COSY (500 MHz, C₆D₆, 25 °C) spectrum of (Cp*₂Y)₂(μ - tBu salophen), **3**.

Fig. S9. Enlarged ${}^{1}H-{}^{1}H$ COSY (500 MHz, C₆D₆, 25 °C) spectrum of (Cp*₂Y)₂(μ - tBu salophen), 3.

Fig. S10. ¹³C NMR (800 MHz, C₆D₆, 25 °C) spectrum of $(Cp^*_2Y)_2(\mu^{-tBu}salophen)$, **3**. δ (ppm): 174.32 (N=CH), 168.29 ((C₆H₂)C-O), 141.47 ((C₆H₄)C-N), 139.59 ((C₆H₂)C-CMe₃), 137.37 ((C₆H₂)C-CMe₃), 132.73 (*p*-CH (C₆H₂)), 130.70 (*o*-CH (C₆H₂)), 128.35 (*m*-CH (C₆H₄)), 127.11 (*o*-CH (C₆H₄)), 122.14 (C₆H₂)C-CH), 118.52 (C₅Me₅), 118.23 (C₅Me₅), 35.95 (CMe₃), 34.04 (CMe₃), 31.40 (CMe₃), 31.00 (CMe₃), 11.99 (C₅Me₅), 11.76 (C₅Me₅).

Fig. S11. ${}^{1}H-{}^{13}C$ HSQC (500 MHz, C₆D₆, 25 °C) spectrum of (Cp*₂Y)₂(μ - tBu salophen), 3.

Fig. S12. ${}^{1}H-{}^{13}C$ HMBC (500 MHz, C_6D_6 , 25° C) spectrum of $(Cp^*{}_2Y)_2(\mu-{}^{tBu}salophen)$, 3.

Fig. S13. Enlarged ${}^{1}H-{}^{13}C$ HMBC (500 MHz, C₆D₆, 25 °C) spectrum of (Cp*₂Y)₂(μ - tBu salophen), 3.

Fig. S14. Proton-coupled ⁸⁹Y NMR (20 mmol, 500 MHz, C₆D₆, 25 °C) spectrum of $(Cp^*_2Y)_2(\mu^{-tBu}$ salophen), **3**, measured from 700 ppm to –500 ppm in the absence of an external reference. δ (ppm): –142.38.

Fig. S15. Proton-coupled ⁸⁹Y NMR (20 mmol, 500 MHz, C₆D₆, 25 °C) spectrum of $(Cp_{2}^{*}Y)_{2}(\mu^{+Bu}$ salophen), **3**, measured from 50 ppm to –350 ppm. Inset of ⁸⁹Y NMR spectrum from –151 to – 153 ppm. δ (ppm): –151.92 (d, ${}^{3}J_{Y-H} = 2.2$ Hz, N=CH). The peak was deconvoluted through a Lorentzian-Gaussian function as implemented in MestReNova V 14.1.1. The turquoise, orange, and blue lines denote the fitted doublet peak, the fitted sum, and residuals, respectively. ⁸⁹Y NMR signal is referenced to a 3 M solution of YCl₃ in D₂O.

S16. Proton-decoupled ⁸⁹Y NMR (⁸⁹Y-{¹H}) (20 mmol, 500 MHz, C₆D₆, 25 °C) spectrum of $(Cp_{2}^{*}Y)_{2}(\mu$ -^{*t*Bu}salophen), **3**, measured from 50 ppm to –350 ppm. Inset of ⁸⁹Y-{¹H} NMR spectrum from –151 to –153 ppm. δ (ppm): –151.90 (s). ⁸⁹Y NMR signal is referenced to a 3 M solution of YCl₃ in D₂O.

3 IR Spectroscopy

Fig. S17. FTIR spectrum on crushed crystalline solids of $(Cp_2^*Gd)_2(\mu^{-tBu}salophen)$, **1**, measured in a nitrogen-filled glovebox.

Fig. S18. FTIR spectrum on crushed crystalline solids of $(Cp_2^*Dy)_2(\mu^{-tBu}salophen)$, **2**, measured in a nitrogen-filled glovebox.

Fig. S19. FTIR spectrum on crushed crystalline solids of $(Cp_2^*Y)_2(\mu^{-tBu}salophen)$, **3**, measured in a nitrogen-filled glovebox.

4 Magnetic Measurements

Fig. S20. Plots of $\chi_M T$ vs. *T* for (Cp*₂Gd)₂(μ -^{tBu}salophen), **1**, between 2 and 300 K under an applied dc field of 0.5 T (red circles), and 1.0 T (cyan triangles).

Fig. S21. Plots of $\chi_M T$ vs. *T* for $(Cp^*_2Dy)_2(\mu^{-tBu}$ salophen), **2**, between 2 and 300 K under an applied dc field of 0.5 T (blue squares), and 1.0 T (red circles).

	g	J (cm⁻¹)	zJ' (cm⁻¹)	Residuals
0.5 T	2.0542	-	-	66.4176
0.5 T	1.9923	0.0295±0.0029	-	18.7860
0.5 T	1.9923	-	0.0105±0.0002	4.8147
0.5 T	1.9947	-0.049±0.0037	0.0178±0.001	3.3652
1.0 T	2.0269	-	-	4.8486
1.0 T	2.0077	-0.0053±0.0004	-	0.4621
1.0 T	2.0100	-	0.0030±0.0001	0.5149
1.0 T	2.0066	-0.0823±0.0032	0.0215±0.0013	1.0191

Table S2. Magnetic exchange coupling constant, *J*, *g* values, and residuals from fitting $\chi_M T$ vs. *T* for **1** between 1.8 and 300 K under an applied dc field of 0.5 and 1.0 T with PHI.¹

Fig. S22. Field-dependent magnetization (left) and reduced magnetization (right) data for $(Cp_2^*Gd)_2(\mu^{-tBu}salophen)$, **1**, between 0 and 7 T from 1.8 to 10 K.

Fig. S23. Field-dependent magnetization (left) and reduced magnetization (right) data for $(Cp_2^*Dy)_2(\mu^{-tBu}salophen)$, **2**, between 0 and 7 T from 1.8 to 10 K.

Fig. S24. Ac field scan at 2 K of $(Cp_2^*Dy)_2(\mu^{-t^{Bu}}salophen)$, **2**, collected from 0 Oe to 2000 Oe in 500 Oe increments. The solid lines represent guides for the eye.

Fig. S25. Cole-Cole plots for ac magnetic susceptibility collected from 1.8 to 4.2 K, under a 1000 Oe applied dc field for $(Cp_2^*Dy)_2(\mu$ -^{*t*Bu}salophen), **2**. The solid lines represent fits to the data.

Fig. S26. Arrhenius plots of relaxation time data for $(Cp_{2}^{*}Dy)_{2}(\mu^{-t^{Bu}}salophen)$, **2**. The orange circles represent the experimental data. The solid lines correspond to fits to data collected between 1.8 and 4.2 K. The solid cyan line in **A** represents a fit of the data between 3.3 and 4.2 K (High-T) to an Orbach process yielding a barrier to spin-reversal of $U_{eff} = 8.9(4)$ cm⁻¹ and a pre-exponential factor of $\tau_0 = 1.3(2) \cdot 10^{-5}$ s. Fitting the entire probed temperature range, **B**, solid cyan line, from 1.8 to 4.2 K afforded a similar barrier height and attempt time: $U_{eff} = 7.8(2)$ cm⁻¹ and $\tau_0 = 2.3(2) \cdot 10^{-5}$ s. The solid black line in **C** represents a fit to a Raman and Orbach relaxation process to give C = 8.39 s⁻¹K⁻ⁿ, n = 4.27, and $U_{eff} = 12.91(5)$ cm⁻¹ and $\tau_0 = 4.2(1) \cdot 10^{-5}$ s. **D** arises from individual contributions of the Orbach (cyan line) and Raman (blue line) magnetic relaxation pathways to the Arrhenius plot of **2** at 1000 Oe.

Fig. S27. Variable field magnetization (M) data for $(Cp_2Dy)_2(\mu^{-tBu}salophen)$, **2**, at 1.8 K and collected between -7 and +7 T at an average sweep rate of 100 Oe/s.

Table S3. Selected multinuclear Gd and Dy complexes containing diamagnetic bridging ligands for which exchange coupling constants were determined, either through direct measurements (Gd) or CASSCF calculations (Dy). *J* values are reported on the basis of the Hamiltonian $\widehat{H} = -2J\widehat{S}_{A}\widehat{S}_{B}$ with A and B representing the interactions of paramagnetic centers, metal ions and/or radical ligands. Abbreviations used in the formula are defined underneath the table.

Formula	<i>J</i> [cm ^{−1}]	Notes	Ref
{(Me ₃ Si) ₂ N} ₂ (THF)Ln] ₂ (µ-η ² :η ² -N ₂)	-0.49		2
$[Cp_4^*Dy_2(\mu-BPh_4)][Al(OC(CF_3)_3)_4]$	0.0014	ac	3
[{Cp* ₂ Dy(µ-Me ₃ AINEt ₃)} ₂][AI{OC(CF ₃) ₃ } ₄] ₂	-0.21	а	4
[{Cp'2Gd(µ-SSiPh3)}2]	-0.105		5
[Cp'2Dy(THF)(µ-Cl)]2	-1.90525	а	5
[{Cp'2Dy(µ-Cl)}2]	-4.42025	а	5
[Cp'₂Dy{µ-Sb(H)Mes}]₃	-0.121	b	6
[(Cp' ₂ Dy) ₃ {µ-(SbMes) ₃ Sb}]	-0.150	b	6
[(Cp* ₂ Gd) ₂ (µ-ind)]	-0.013(1)		7
[{K(THF) ₃ } ₂ (Cp* ₂ Ln) ₂ (µ-ind)]	-0.018(1)		7
[(Cp'₂Dy){µ-As(H)Mes}]₃	-4.926.87	а	8
[Li(THF) ₄] ₂ [(Cp' ₂ Dy) ₃ (µ ₃ -AsMes) ₃ Li]•THF	-6.619.76	а	8
[(Cp' ₂ Dy){µ-SeMes}] ₃ •tol	-4.765.02	а	8
[(Cp' ₂ Dy){µ-P(H)Mes}] ₃ •tol	-4.134.08	b	9
[Li(THF)4]2[(Cp'2Dy)3(µ-PMes)3Li]•THF	-2.7022.749	b	9
[Cp' ₂ Dy(µ-Cl)] ₂	-4.81	b	10
[Cp' ₂ Dy(µ-Br)] ₂	-4.33	b	10
[Cp' ₂ Dy(µ-I)] ₂	-3.65	b	10
[{Dy(BH ₄) ₂ (THF)} ₂ (Fv ^{tttt})]	-0.9	b,c	11
[Cp*Dy(µ-BH ₄)} ₂ (Fv ^{tttt})]	-2.5	b,c	11
[(Cp*Dy) ₂ (μ-BH ₄)(η ⁵ :η ⁵ -Fv ^{tttt})]	-1.4	b,c	11
[Gd ₂ (Hhmb) ₃ (NCS) ₃]•2MeOH•py	-0.02		12
$[GdL_{3}(H_{2}O)_{1}]_{2}$	0.05		13
[Gd ₄ (HL) ₄ (µ ₂ -MeO) ₄]•4MeOH	-0.105	d	14
[Gd(Cy ₃ PO) ₂ (µ-Br)(Br) ₂] ₂ •2tol	-0.029		15
[Gd ₂ (L)(Cl-salphen) ₂]•0.5ClCH ₂ CH ₂ Cl	-0.024	е	16
Gd ₂ (thd) ₆ (4,4'-Bpy)	0.0491		17
[Gd ₄ (LH) ₄ (LH ₂) ₂ (MeO) ₂]	-0.033(1) -0.0133(3)	d	18

^aDerived from CASSCF calculations; ^bLines model; ^cDipolar coupling; ^dCluster complex; ^eSchiff base complex. Bpy = bipyridine, Cl-salphenH₂ = N,N'-bis(5-chlorosalicylidene)-ophenylenediamine, Cp' = (η^5 -C₅H₄Me), Fv^{ttt} = [1,1',3,3'-(C₅^tBu₂H₂)₂]²⁻, Hhmb = N'-(2-hydroxy-3methoxybenzylidene)benzhydrazide, HL = N'-(4-diethylamino-2-hydroxybenzylidene)-6-(hydroxymethyl)picolinohydrazide, L = salicylic acid, ind = indigo, LH = C₁₁H₁₃N₃O₄, Mes = mesityl, thd = 2,2,6,6-tetramethyl-3,5-heptanedione

5 Cyclic Voltammetry

Fig S28. Cyclic voltammograms of $(Cp_{2}^{*}RE)_{2}(\mu^{-t^{Bu}}salophen)$, where RE = Gd (1), Dy (2), and Y (3), measured in THF with $({}^{n}Bu_{4}N)(PF_{6})$ (1 mM) as an electrolyte and 100 mV/s scan rate (top). Magnification of the quasi-reversible features at -2.33 V of 1 (bottom left) and at -2.10 V of 3 (bottom right), respectively.

6 EPR Spectroscopy

Fig. S29. Frozen solution X-band EPR spectrum of $(Cp_2^*Gd)_2(\mu^{-tBu}salophen)$, **1**, in THF, recorded at 10 K at 9.397 GHz with a 5.00 G modulation amplitude, 36.0 dB attenuation and a 60 dB gain.

7 DFT Calculations

	Exp	def2-SV(P) 6-31+Gdp	def2-SV(P) 6-31Gdp	def2-SV(P)	def2-TZVP 6-311Gdp
			Distance (Å)		
Y1-Cp	2.6844	2.7176	2.7135	2.7136	2.7074
Y2-Cp	2.6915	2.7176	2.7136	2.7138	2.7076
Y1-01	2.1679(15)	2.1890	2.1900	2.1870	2.1860
Y2-O2	2.1762(15)	2.1890	2.1900	2.1870	2.1860
Y1-N1	2.4471(18)	2.4610	2.4570	2.4590	2.4640
Y2-N2	2.4518(18)	2.4600	2.4570	2.4590	2.4640
O1-C21	1.309(3)	1.3050	1.3050	1.2980	1.3010
O2-C22	1.308(3)	1.3050	1.3050	1.2980	1.3010
N1-C24	1.309(3)	1.3110	1.3110	1.3100	1.3070
N2-C26	1.301(3)	1.3110	1.3110	1.3100	1.3070
N1-C23	1.435(3)	1.4240	1.4230	1.4200	1.4240
N2-C25	1.433(3)	1.4240	1.4230	1.4200	1.4240
C24-C52	1.438(3)	1.4360	1.4350	1.4370	1.4340
C26-C64	1.432(3)	1.4360	1.4350	1.4370	1.4340
MD		0.0073	0.0061	0.0047	0.0045
MSE		0.0002	0.0002	0.0002	0.0001
RMSE		0.0146	0.0134	0.0140	0.0120
MAPE		0.272%	0.216%	0.112%	0.111%

Table S4. Metrical parameters for $(Cp_2^*Y)_2(\mu^{-tBu}salophen)$, **3**, calculated as a neutral singlet using the B3LYP functional with varying basis sets.

	Exp	def2-SV(P) 6-31+Gdp	def2-SV(P) 6-31Gdp	def2-SV(P)	def2-TZVP 6-311Gdp
			Angle (°)	
Cnt-Y-Cnt	137.0	137.408	137.571	137.907	137.556
N-Y-O	76.1	76.056	76.189	76.184	75.752
C-N-C	117.4	119.039	119.055	119.520	119.011
MD		0.647	0.751	1.017	0.586
MSE		0.946	1.013	1.760	1.010
RMSE		0.894	1.027	3.097	1.020
MAPE		0.522%	0.625%	0.837%	0.418%

^aMean deviation (MD). ^bMean square error (MSE). ^cRoot mean square error (RMSE). ^dMean absolute percentage error (MAPE). ^eCnt = Cp* ring centroid.

	Exp	def2-SV(P) 6-31+Gdp	def2-SV(P) 6-31Gdp	def2-SV(P)	def2-TZVP 6-311Gdp
			Distances (Å)	
Ү1-Ср	2.6844	2.6945	2.6919	2.6942	2.6825
Y2-Cp	2.6915	2.6945	2.6919	2.6941	2.6825
Y1-01	2.1679(15)	2.1940	2.1950	2.1920	2.1900
Y2-O2	2.1762(15)	2.1940	2.1950	2.1920	2.1900
Y1-N1	2.4471(18)	2.4350	2.4340	2.4380	2.4360
Y2-N2	2.4518(18)	2.4350	2.4340	2.4380	2.4360
O1-C21	1.309(3)	1.3080	1.3080	1.3000	1.3040
O2-C22	1.308(3)	1.3080	1.3080	1.3000	1.3040
N1-C24	1.309(3)	1.3160	1.3160	1.3140	1.3120
N2-C26	1.301(3)	1.3160	1.3160	1.3140	1.3120
N1-C23	1.435(3)	1.4220	1.4210	1.4170	1.4210
N2-C25	1.433(3)	1.4210	1.4210	1.4170	1.4210
C24-C52	1.438(3)	1.4330	1.4320	1.4340	1.4310
C26-C64	1.432(3)	1.4330	1.4320	1.4330	1.4310
MD		0.0014	0.0009	-0.0005	-0.0022
MSE		0.0002	0.0002	0.0002	0.0001
RMSE		0.0124	0.0128	0.0124	0.0110
MAPE		0.066%	0.038%	0.081%	0.131%

Table S5. Metrical parameters for $(Cp_2^*Y)_2(\mu^{-tBu}$ salophen), **3**, calculated as a neutral singlet using the hybrid TPSSh functional with varying basis sets.

	Ехр	def2-SV(P) 6-31+Gdp	def2-SV(P) 6-31Gdp	def2-SV(P)	def2-TZVP 6-311Gdp
			Angles (°	?)	
Cnt-Y-Cnt	137.0	138.155	137.941	138.274	138.020
N-Y-O	76.1	76.215	76.279	76.238	75.958
C-N-C	117.4	118.260	118.665	119.140	118.565
MD		0.800	0.878	0.826	0.798
MSE		0.9704	1.0945	1.0695	0.7606
RMSE		0.985	1.046	1.034	0.872
MAPE		0.621%	0.696%	0.660%	0.644%

^aMean deviation (MD). ^bMean square error (MSE). ^cRoot mean square error (RMSE). ^dMean absolute percentage error (MAPE). ^eCnt = Cp* ring centroid.

	Ехр	def2-SV(P) 6-31+Gdp	def2-SV(P) 6-31Gdp	def2-SV(P)	def2-TZVP 6-311Gdp
			Distances (Å)	
Y1-Cp	2.6844	2.6998	2.6976	2.6998	2.6884
Y2-Cp	2.6915	2.6999	2.6976	2.6999	2.6884
Y1-01	2.1679(15)	2.1980	2.1990	2.1970	2.1950
Y2-O2	2.1762(15)	2.1980	2.1990	2.1960	2.1950
Y1-N1	2.4471(18)	2.4340	2.4320	2.4380	2.4350
Y2-N2	2.4518(18)	2.4340	2.4320	2.4380	2.4360
O1-C21	1.309(3)	1.3140	1.3140	1.3060	1.3100
O2-C22	1.308(3)	1.3140	1.3140	1.3060	1.3100
N1-C24	1.309(3)	1.3230	1.3230	1.3210	1.3190
N2-C26	1.301(3)	1.3230	1.3230	1.3210	1.3190
N1-C23	1.435(3)	1.4250	1.4240	1.4200	1.4240
N2-C25	1.433(3)	1.4250	1.4240	1.4200	1.4240
C24-C52	1.438(3)	1.4350	1.4340	1.4350	1.4320
C26-C64	1.432(3)	1.4350	1.4340	1.4350	1.4320
MD		0.0053	0.0045	0.0035	0.0017
MSE		0.0002	0.0002	0.0002	0.0002
RMSE		0.0149	0.0153	0.0141	0.0125
MAPE		0.312%	0.275%	0.166%	0.112%
	-				

Table S6. Metrical parameters for $(Cp_2^*Y)_2(\mu^{-tBu}$ salophen), **3**, calculated as a neutral singlet using the TPSSTPSS functional with varying basis sets.

	Ехр	def2-SV(P) 6-31+Gdp	def2-SV(P) 6-31Gdp	def2-SV(P)	def2-TZVP 6-311Gdp
			Angles (°	r)	
Cnt-Y-Cnt	137.0	138.140	137.924	138.235	137.988
N-Y-O	76.1	76.464	76.518	76.480	76.178
C-N-C	117.4	118.616	118.604	119.071	118.528
MD		0.887	0.829	1.075	0.711
MSE		0.947	0.803	1.461	0.738
RMSE		0.896	0.645	2.136	0.544
MAPE		0.759%	0.727%	0.918%	0.572%

^aMean deviation (MD). ^bMean square error (MSE). ^cRoot mean square error (RMSE). ^dMean absolute percentage error (MAPE). ^eCnt = Cp* ring centroid.

8 References

- 1 N. F. Chilton, R. P. Anderson, L. D. Turner, A. Soncini and K. S. Murray, PHI: a powerful new program for the analysis of anisotropic monomeric and exchange-coupled polynuclear *d* and *f*-block complexes, *J. Comput. Chem.*, 2013, **34**, 1164–1175.
- J. D. Rinehart, M. Fang, W. J. Evans and J. R. Long, Strong exchange and magnetic blocking in N₂³⁻-radical-bridged lanthanide complexes, *Nat. Chem.*, 2011, 3, 538–542.
- 3 D. Errulat, B. Gabidullin, A. Mansikkamäki and M. Murugesu, Two heads are better than one: improving magnetic relaxation in the dysprosium metallocene upon dimerization by use of an exceptionally weakly-coordinating anion, *Chem. Commun.*, 2020, **56**, 5937–5940.
- 4 P. Evans, D. Reta, C. A. P. Goodwin, F. Ortu, N. F. Chilton and D. P. Mills, A doubledysprosocenium single-molecule magnet bound together with neutral ligands, *Chem. Commun.*, 2020, **56**, 5677–5680.
- 5 F. Tuna, C. A. Smith, M. Bodensteiner, L. Ungur, L. F. Chibotaru, E. J. L. McInnes, R. E. P. Winpenny, D. Collison and R. A. Layfield, A High Anisotropy Barrier in a Sulfur-Bridged Organodysprosium Single-Molecule Magnet, *Angew. Chem. Int. Ed.*, 2012, **51**, 6976–6980.
- 6 T. Pugh, N. F. Chilton and R. A. Layfield, Antimony-ligated dysprosium singlemolecule magnets as catalysts for stibine dehydrocoupling, *Chem. Sci.*, 2017, **8**, 2073–2080.
- F.-S. Guo and R. A. Layfield, Strong direct exchange coupling and single-molecule magnetism in indigo-bridged lanthanide dimers, *Chem. Commun.*, 2017, **53**, 3130– 3133.
- 8 T. Pugh, V. Vieru, L. F. Chibotaru and R. A. Layfield, Magneto-structural correlations in arsenic- and selenium-ligated dysprosium single-molecule magnet, *Chem. Sci.*, 2016, **7**, 2128–2137.
- 9 T. Pugh, F. Tuna, L. Ungur, D. Collison, E. J. L. McInnes, L. F. Chibotaru and R. A. Layfield, Influencing the properties of dysprosium single-molecule magnets with phosphorus donor ligands, *Nat. Commun.*, 2015, **6**, 7492.
- 10 Y. Meng, J. Xiong, M. Yang, Y. Qiao, Z. Zhong, H. Sun, J. Han, T. Liu, B. Wang and S. Gao, Experimental Determination of Magnetic Anisotropy in Exchange-Bias Dysprosium Metallocene Single-Molecule Magnets, *Angew. Chem. Int. Ed.*, 2020, 59, 13037–13043.
- 11 M. He, F.-S. Guo, J. Tang, A. Mansikkamäki and R. A. Layfield, Fulvalene as a platform for the synthesis of a dimetallic dysprosocenium single-molecule magnet, *Chem. Sci.*, 2020, **11**, 5745–5752.
- 12 A.-J. Hutchings, F. Habib, R. J. Holmberg, I. Korobkov and M. Murugesu, Structural Rearrangement Through Lanthanide Contraction in Dinuclear Complexes, *Inorg. Chem.*, 2014, **53**, 2102–2112.
- 13 J.-P. Costes, J. M. Clemente-Juan, F. Dahan, F. Nicodème and M. Verelst, Unprecedented Ferromagnetic Interaction in Homobinuclear Erbium and Gadolinium Complexes: Structural and Magnetic Studies, *Angew. Chem. Int. Ed.*, 2002, **41**, 323–325.

- 14 W.-M. Wang, M.-J. Wang, S.-S. Hao, Q.-Y. Shen, M.-L. Wang, Q.-L. Liu, X.-F. Guan, X.-T. Zhang and Z.-L. Wu, 'Windmill'-shaped Ln^{III}₄ (Ln^{III} = Gd and Dy) clusters: magnetocaloric effect and single-molecule-magnet behavior, *New J. Chem.*, 2020, **44**, 4631–4638.
- 15 M. Li, H. Wu, Z. Xia, V. Montigaud, O. Cador, B. Le Guennic, H. Ke, W. Wang, G. Xie and S. Chen, Bromine-bridged Dy₂ single-molecule magnet: magnetic anisotropy driven by cis/trans stereoisomers, *Chem. Commun.*, 2019, **55**, 14661–14664.
- 16 F. Gao, L. Wang, G.-Z. Zhu, Y.-H. Liu, H. Yang, X. Li and K. Yang, Controllable syntheses and magnetic properties of novel homoleptic triple-decker lanthanide complexes, *Dalt. Trans.*, 2019, **48**, 13360–13368.
- 17 X. Yao, G. An, Y. Li, P. Yan, W. Li and G. Li, Effect of nuclearity and symmetry on the single-molecule magnets behavior of seven-coordinated β -diketonate Dy(III) complexes, *J. Solid State Chem.*, 2019, **274**, 295–302.
- 18 M. U. Anwar, A. Al-Harrasi, J. M. Rawson, E. L. Gavey, J. Regier, D. Alexandropoulos, M. Pilkington and L. K. Thompson, Slow magnetic relaxation in Dy₂ and Dy₄ complexes of a versatile, trifunctional polydentate N,O-ligand, *Dalt. Trans.*, 2019, **48**, 14269–14278.