Supplementary Information

Unexpected and frustrating transformations of double-decker silsesquioxanes

Monika Rzonsowska, Katarzyna Mituła, Julia Duszczak, Małgorzata Kasperkowiak, Rafał Januszewski, Anita Grześkiewicz, Maciej Kubicki, Daria Głowacka and Beata Dudziec*

Table of Contents

1.	Experimental Procedures	S-2
1.1	Measurements	S-2
2.	Additional spectra	S-3 - S-5
3.	The list of obtained products	S-6
4.	Data characterizing the obtained products and copies of ¹ H, ¹³ C, ²⁹ Si NMR spectra	S-7 - S-33
5.	Spectrometric Analysis	S-34 - S-36
6.	TGA/DSC	S-37 - S-40
7.	X-ray Analysis	S-41 - S-45
8.	References	S - 45

1. Experimental Procedures

1.1 Measurements

Nuclear Magnetic Resonance (NMR)

¹H, ¹³C, and ²⁹Si Nuclear Magnetic Resonance (NMR) were performed on Brucker Ultra Shield 400 and 300 spectrometers using CDCl₃ and CD₂Cl₂ as solvents. Chemical shifts are reported in ppm with reference to the residual solvents peaks for ¹H and ¹³C and to TMS for ²⁹Si NMR.

FT-IR spectroscopy

Fourier Transform-Infrared (FT-IR) spectra were recorded on a Nicolet iS5 (Thermo Scientific) spectrophotometer equipped with a diamond ATR unit. In all cases, 16 scans at a resolution of 2 cm⁻¹ were collected, to record the spectra in a range of 4000-450 cm⁻¹.

ESI-TOF MS

High resolution mass spectra (HRMS) were obtained using Impact HD mass spectrometer (Q-TOF type instrument equipped with electrospray ion source; Bruker Daltonics, Germany). The sample solutions (DCM/MeOH) were infused into the ESI source by a syringe pump (direct inlet) at the flow rate of 3 μ L/min. The instrument was operated under the following optimized settings: end plate voltage 500 V; capillary voltage 4.2 kV; nebulizer pressure 0.3 bar; dry gas (nitrogen) temperature 200°C; dry gas flow rate 4 L/min. The spectrometer was previously calibrated with the standard tune mixture.

MALDI-TOF MS

Matrix assisted laser desorption ionization time of flight (MALDI-TOF) mass spectrometry was performed using a Ultraflex TOF/TOF (Bruker Daltonics, Germany) in reflection mode. The thin-layer preparation method was applied. The matrix (2,5-dihydroxybenzoic acid - DHB) was dissolved at a concentration of 20 mg/mL in mixture of 0.1% TFA in de-ionized water (70 % v/v) and acetonitrile (30% v/v). The matrix solution was spotted onto the target and dried in air. In the next step sample solution (2 mg/mL in DCM) was deposited onto the matrix spot and dried in air.

Elemental analyses (EA)

Elemental analyses were performed using a Vario EL III instrument (Elementar Analysensysteme GmbH, Langenselbold, Germany).

Thermogravimetric Analysis (TGA)

TGA analyses were performed using a TGA4000 (Perkin Elmer) with thermal gravimetric analyzer. The measurements were conducted in nitrogen atmosphere (flow of 20 mL/min), from 30°C to 995°C, at the heating rate of 10°C/min. The temperature of initial degradation (Td) was taken as the onset temperature at which 5 wt% of mass loss occurs.

X-ray crystallography

Diffraction data were collected by the ω -scan technique, using for SQ-T1d mirror-monochromated CuK α radiation (λ =1.54178 Å), at 130(1) on Rigaku SuperNova four-circle diffractometer with Atlas CCD detector, and in all other cases with graphite-monochromated MoK α radiation (λ =0.71073 Å), at 100(1) (for SQ-Dm2d at room temperature) on Rigaku XCalibur four-circle diffractometer with EOS CCD detector. The data were corrected for Lorentz-polarization as well as for absorption effects.[1] Precise unit-cell parameters were determined by a least-squares fit of the reflections of the highest intensity, chosen from the whole experiment. The structures were solved with SHELXT [2] and refined with the full-matrix least-squares procedure on F₂ by SHELXL.[3] All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were placed in idealized positions and refined as 'riding model' with isotropic displacement parameters set at 1.2 (1.5 for CH₃) times Ueq of appropriate carrier atoms. The crystals of SQ-T1a and SQ-T1d turned out to be twinned, and this was considered both during data reduction and structure refinement. BASF parameter, indicating the mutual content of two components, refined at 0.5048(5) in SQ-T1a and at 0.455(4) in SQ-T1d. In structures SQ-Td1a, SQ-Dm2b and SQ-T1b-SC, SQ-Td1c-SC and SQ-Td1c (especially heavy disorder) certain fragments of the structures have been disordered over two or even three positions, and alternatives were refined with a number of restraints. In SQ-Dm2a and SQ-T1b-SC the huge regions of diffused electron density were found; as the attempts of modelling the solvent molecules were unsuccessful, the SQUEEZE modelling of these diffused electron density was applied.[4] In some cases, restraints or constraints for the displacement ellipsoids were also applied.

Crystallographic data for the structural analysis has been deposited with the Cambridge Crystallographic Data Centre. Copies of this information may be obtained free of charge from: The Director, CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK; e-mail: deposit@ccdc.cam.ac.uk, or www: www.ccdc.cam.ac.uk.

2. Additional spectra

Figure S 1 ²⁹Si NMR spectra of a) SQ-T1a and b) SQ-Td1a.

Figure S 2 ¹H NMR spectra of post-reaction mixture of hydrolytic condensation of SQ-4OH with 2a.

Figure S 1 Stacked ¹H NMR spectra of SQ-T1b hydrolytic condensation reaction mixtures measured after a) 4 h and b) 20 h.

3. The list of obtained products

Chlorosilane	Structures of obtained com	mpounds [Yield (%)]		
1a	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c} Ph & si = 0 \\ Ph & si =$		
	SQ-T1a, pp. S8-S9 [68]	SQ-1018, pp. 510-511 [18]		
1Ь	$\begin{array}{c} Ph - si - 0 - si - Ph - i \\ Ph - si - 0 - si - 0 - si \\ O - si - 0 - si - 0 \\ Ph - si - 0 - si - 0 \\ Ph - si - 0 - si - 0 \\ O - si - 0 - si - 0 \\ O - si - 0 - si - 0 \\ O - si - 0 - si - 0 \\ Ph - si - 0 \\ P$	Ph $si = 0$ $si < Ph si$ Ph $si = 0$ $si < Ph si$ Ph $si = 0$ $si < 0$ Ph $si < 0$ $si < 0$ $si < 0$ Ph $si < 0$ $si < 0$ $si < 0$ $si < 0$ Ph $si < 0$ $si $		
	SQ-T1b, pp. S12 [90]	SQ-1d1b, pp. S12-S13 [8]		
1c	$\begin{array}{c} Ph & Ph \\ Ph & Si & O \\ Si & O \\ Ph \\ Si & O \\ Ph \\ Ph \\ Ph \\ Ph \\ Si \\ O \\ Si \\ Ph \\ Ph \\ Ph \\ Ph \\ Si \\ O \\ Si \\ O \\ Si \\ Ph \\ P$	$\begin{array}{c} Ph \\ Ph \\ Si \\ O \\ Ph $		
	SQ-T1c, pp. S14 [65]	SQ-Td1c, pp. S14-S15 [25]		
1d	Ph Si O Si Ph Si O Si O Si O Ph O Si O Si O Ph O Si O Si O Ph O Si O Si O Si Ph O Si O Si O Si O Si O Si O Si O Si O Si O	Ph Si O Si Ph Si O Si O Ph Si O Ph Si O Si O Ph Si O Ph Si O Si O Ph		
	SQ-T1d, pp. S16 [69]	SQ-Td1d, pp. S17-S18 [15]		
2a	$\begin{array}{c} Ph \\ Si \\ O \\ Si \\ O \\ Si \\ O \\ Ph \\ Si \\ O \\ Si \\$	Ph Si O Si O Ph Si O Si O Si O Ph Si O Ph Si O Ph Si O Si O Ph Si O Si O Ph Si O Ph Si O Ph Si O Si O Ph Si O Ph Si O O Ph Si O Ph Si O Ph Si O O Ph Si O Ph Si O Ph Si O O Ph Si O Ph Si		
	SQ-D2a, pp. S19 [70]	SQ-Dm2a, pp. S19-S20 [15]		
2b	Ph_Si_O_Si_Ph Ph_Si_O_Si_O Ph_Si_O_Si_O Ph_Si_O_Si_O Ph_Si_O_Si_Ph Ph_Si_O_Si_Ph Si_O_Si_Ph Si_O_Si_Ph Si_O_Si_Ph Ph_Si_O_Si_Ph Ph_Si_O_Si_Ph Ph_Si_O_Si_Ph Ph_Si_O_Si_O Ph_Si_O_Si_O Ph_Si_O_Si_O Ph_Si_O_Si_O Ph_Si_O_Si_O Ph_Si_O_Si_O Ph_Si_O_Si_O Ph_Si_O_Si_O Ph_Si_O_Si_O Ph_Si_O_Si_O Ph_Si_O	Ph $s_i = 0 - s_i$ Ph $s_i = 0$ Ph $s_i = 0 + s_i$ Ph $s_i = 0$ Ph $s_i = 0$ Ph $s_i = 0 + s_i$ Ph $s_i = 0$ Ph $s_i = 0 + s_i$ Ph $s_i = 0$ Ph $s_$		
2d	Ph Si O Si Ph Si O Si O Si Ph Si O Si Ph Si O Si O Si Ph Si O Si O Si Ph Si O Si O Si O Si O Si Ph Si O Si O	Ph $si = 0$ $si < Ph$ Ph $si = 0$ $si < Ph$ Si $e^{-Si} < Ph$ SQ-Dm2d, pp. S23-S24 [12]		
	$\begin{array}{c} \begin{array}{c} Ph \\ si \\ o \\ si \\ si$	$\begin{array}{c} \begin{array}{c} Ph & Ph \\ Ph & Si & O \\ Si & Si \\ Ph & Si \\ O \\ Si \\ O \\ Ph \\ O \\ O \\ O \\ O \\ Ph \\ O \\ O \\ O \\ Ph \\ O \\ O \\ O \\ Ph \\ O \\ $		
	SQ-T1b-SC, pp. S29-S31 [89]	SQ-Td1c-SC, pp. S32-S34 [85]		

 Table S 1 The list of obtained products with their yields and respective chlorosilane used

4. Data characterizing the obtained products and copies of ¹H, ¹³C, ²⁹Si NMR spectra

SQ-T1a

White solid. Isolated Yield 68%.

¹**H NMR** (CDCl₃, 300 MHz): δ/ppm = 7.45-7.13 (m, 40H, Ph), 3.00 (t, *J* = 6.9 Hz, 8H), 1.52-1.44 (m, 8H, -CH₂-), 0.56-0.50 (m, 8H, -SiCH₂-), 0.02 (s, 24H, -Si(CH₃)₂).

¹³C NMR (CDCl₃, 101 MHz): δ/ppm = 134.38, 134.31, 133.16, 131.45, 130.56, 130.20, 127.91, 127.75 (Ph), 47.73 (-CH₂-Cl), 26.84 (-CH₂-), 15.88 (-SiCH₂-), 0.19 (-Si(CH₃)₂).

²⁹Si NMR (CDCl₃, 79 MHz): δ/ppm = 10.76 (-Si(CH₃)₂), -75.76, -78.57.

IR (ATR, cm-1): 3072.26, 3050.65 (C-H phenyl), 3005.38 (=C-H), 2953.48 (C-H), 1593.35, 1429.50 (C=C phenyl), 1251.85 (Si-C), 1126.64, 1096.14, 1040.23 (Si-O-Si), 997.63 (C-H phenyl).

EA: Anal. calcd for C₆₈H₈₈Cl₄O₁₄Si₁₂ (%):C, 50.78, H, 5.52; found: C, 50.89; H, 5.63.

ESI-MS: Calcd. for $C_{68}H_{88}Cl_4Na^+O_{14}Si_{12}$: *m/z* 1627.2052 [M + Na⁺]. Found: 1627.2077.

Figure S 2 ¹H NMR spectrum of SQ-T1a in CDCl₃, 300 MHz.

45 40 35 30 25 20 15 10 5 0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -1 ppm

Figure S 4 ²⁹Si NMR spectrum of SQ-T1a in CDCl₃, 79 MHz.

SQ-Td1a

Crystalline solid. Isolated Yield 18%.

¹**H NMR** (CDCl₃, 300 MHz): δ /ppm = 7.56-7.17 (m, 40H, Ph), 3.42 (t, *J* = 6.9 Hz, 4H), 1.87-1.80 (m, 4H, -CH₂-), 0.78-0.73 (m, 4H, -SiCH₂-), 0.26 (s, 12H, -Si(CH₃)₂).

¹³C NMR (CDCl₃, 101 MHz): δ/ppm = 134.19, 134.10, 133.05, 130.81, 130.70, 130.55, 127.96, 127.90, 127.73 (Ph), 48.05 (-CH₂-Cl), 26.97 (-CH₂-), 15.85 (-SiCH₂-), 0.29 (-Si(CH₃)₂). ²⁹Si NMR (CDCl₃, 79 MHz): δ/ppm = 11.80 (-Si(CH₃)₂), -75.81, -76.31, -77,94.

IR (ATR, cm-1): 3072.51, 3050.60 (C-H phenyl), 3027.69 (=C-H), 2954.06 (C-H), 1593.68, 1429.91 (C=C phenyl), 1253.82 (Si-C), 1063.66 (Si-O-Si), 997.51 (C-H phenyl).

EA: Anal. calcd for C₅₈H₆₄Cl₂O₁₃Si₁₀ (%):C, 52.74, H, 4.88; found: C, 52.69; H, 4.93.

ESI-MS: Calcd. for $C_{58}H_{64}Cl_2Na^+O_{13}Si_{10}$: *m/z* 1341.1309 [M + Na⁺]. Found: 1341.1224.

Figure S 5 ¹H NMR spectrum of SQ-Td1a in CDCl₃, 300 MHz.

50 45 40 35 30 25 20 15 10 5 0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 ppm

Figure S 7 ²⁹Si NMR spectrum of SQ-Td1a in CDCl₃, 79 MHz.

SQ-T1b

White solid. Isolated Yield 90%.

All analyses including NMR spectra, FT-IR, MALDI-TOF MS and crystal structure were presented previously.[5]

SQ-Td1b

White solid. Isolated Yield 8%.

¹**H NMR** (CDCl₃, 300 MHz): δ /ppm = 7.57-7.15 (m, 40H, Ph), 6.21 (dd, J_{H-H} = 20.3, 14.9 Hz, 2H), 5.97 (dd, J_{H-H} = 14.9, 3.8 Hz, 2H), 5.832 (dd, J_{H-H} = 20.2, 3.8 Hz, 2H), 0.30 (s, 12H, -Si(CH₃)₂).

 $\label{eq:main_star} ^{13}\textbf{C} \ \textbf{NMR} \ (\text{CDCl}_3, \ 101 \ \text{MHz}): \ \delta/\text{ppm} = 138.71 \ (\text{-CH=CH}_2), \ 134.24, \ 133.24 \ (\text{Ph}), \ 132.58 \ (\text{-CH=CH}_2), \ 130.92, \ 130.78, \ 130.44, \ 130.21, \ 127.90, \ 127.84, \ 127.66 \ (\text{Ph}), \ 0.47 \ (\text{-Si}(\text{CH}_3)_2).$

²⁹Si NMR (CDCl₃, 79 MHz): δ /ppm = 0.21 (-(Vi)Si(CH₃)₂), -75.99, -76.37, -78.16.

IR (ATR): 3072.48, 3050.90 (C-H phenyl), 3016.96 (=C-H), 2959.65 (C-H), 1593.80, 1430.05 (C=C phenyl), 1253.39 (Si-C), 1113.95, 1067.01, 1029.18 (Si-O-Si), 998.39 (C-H phenyl).

EA: Anal. Calcd. for C₅₆H₅₈O₁₃Si₁₀ (%):C, 55.14, H, 4.79; found: C, 55.19; H, 4.83.

ESI-MS: Calcd. for $C_{56}H_{62}Na^+O_{13}Si_{10}$: m/z 1236.1908 [M + NH₄]⁺. Found: 1236.1892.

Figure S 8 ¹H NMR spectrum of SQ-Td1b in CDCI₃, 300 MHz.

50 45 40 35 30 25 20 15 10 5 0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -1/

SQ-T1c

White solid. Isolated Yield 65%.

All analyses including NMR spectra, FT-IR and MALDI-TOF MS were presented previously.[5]

SQ-Td1c

White solid. Isolated Yield 25%.

¹**H NMR** (CDCl₃, 300 MHz): δ/ppm = 7.55-7.07 (m, 60H, Ph), 6.31 (dd, *J*_{H-H} = 20.1, 14.9 Hz, 2H), 6.08 (dd, *J*_{H-H} = 14.8, 3.8 Hz, 2H), 5.87 (dd, *J*_{H-H} = 20.1, 3.8 Hz, 2H).

¹³**C** NMR (CDCl₃, 101 MHz): δ /ppm = 136.85 (-CH=CH₂), 135.16, 134.96, 134.27 (Ph), 132.74 (-CH=CH₂), 130.77, 130.64, 130.40, 130.21, 129.76, 127.87, 127.76, 127.58 (Ph).

²⁹Si NMR (CDCl₃, 79 MHz): δ/ppm = -20.30 (-Si(Ph)₂-Vi), -75.30, -76.18, -77.72.

IR (ATR): 3070.96, 3052.73 (C-H phenyl), 3007.01 (=C-H), 1593.59, 1429.26 (C=C phenyl), 1130.41, 1108.24 1072.59, 1028.00 (Si-O-Si), 997.87 (C-H phenyl).

ESI-MS: Calcd. for C₇₆H₇₀Na⁺O₁₃Si₁₀: *m*/z 1484.2534 [M + NH₄⁺]. Found: 1484.2534.

Figure S 11 ¹H NMR spectrum of SQ-Td1c in CDCI₃, 300 MHz.

Figure S 13 ²⁹Si NMR spectrum of SQ-Td1c in CDCl₃, 79 MHz.

SQ-T1d

Crystal solid. Isolated Yield 69%.

All analyses including NMR spectra, FT-IR and MALDI-TOF MS were presented previously. [5] However in this paper We present crystal structure.

Picture S 1 Microscope photo of SQ-T1d.

Picture S 2 Microscope photo of SQ-T1d.

Picture S 3 Microscope photo of SQ-T1d presented on mm paper.

SQ-Td1d

Picture S 4 Microscope photo of SQ-Td1d presented on mm paper.

White solid. Isolated Yield 15%.

¹H NMR (CDCl₃, 300 MHz): δ/ppm = 7.56-7.18 (m, 40H, Ph), 5.90-5.75 (m, 2H, CH=), 4.91-4.81 (m, 4H =CH₂), 1.70 (d, J_{H-H} = 8.1 Hz, 4H, -CH₂-), 0.25 (s, 12H, -Si(CH₃)₂).

¹³C NMR (CDCl₃, 101 MHz): δ/ppm = 134.23-134.19, 133.21 (Ph), 130.87 (-CH=CH₂), 130.79 (Ph), 130.48, 130.25, 127.90-127.69 (Ph), 113.86 (-CH=CH₂), 26.12 (-CH₂-), -0.12 (-Si(CH₃)₂).

²⁹Si NMR (CDCl₃, 79 MHz): δ/ppm = 8.92 (-(All)Si(CH₃)₂), -76.04, -76.34, -78.05. IR (ATR): 3072.88, 3051.27 (C-H phenyl), 3028.09 (=C-H), 2959.19 (-C-H), 1629.97 (C=C), 1594.15, 1429.91 (C=C phenyl), 1255.93 (Si-C), 1050.68, 1026.91 (Si-O-Si), 996.99 (C-H phenyl).

EA: Anal. calcd for C₅₈H₆₂O₁₃Si₁₀ (%):C, 55.82, H, 5.01; found: C, 55.89; H, 5.03.

ESI-MS: Calcd. for C₅₈H₆₂Na⁺O₁₃Si₁₀: *m/z* 1269.1775 [M + Na⁺]. Found: 1269.1775. 1H NMR (300 MHz, CDCl3)

Figure S 14 ¹H NMR spectrum of SQ-Td1d in CDCl₃, 300 MHz.

Figure S 15 ¹³C NMR spectrum of SQ-Td1d in CDCI₃, 101 MHz.

White solid. Isolated Yield 70%.

Analytical data (NMR spectra, FT-IR and MALDI-TOF MS) correspond with the literature.[6]

SQ-Dm2a

Crystal solid. Isolated Yield 15%.

¹**H NMR** (CDCl₃, 300 MHz): δ/ppm = 7.74-7.72 (m, 40H, Ph), 3.45-3.41 (t, 2H, -CH₂-Cl), 1.93-1.83 (m, 2H, -CH₂-), 0.88-0.83 (m, 2H, -SiCH₂-), 0.33 (s, 3H, -SiCH₃).

¹³**C NMR** (CDCl₃, 101 MHz): δ /ppm = 134.33, 134.26, 133.99, 131.90, 130.91, 130.78, 130.61, 130.41 128.03, 127.93 (Ph), 47.59 (-CH₂-Cl), 26.53 (-CH₂-), 14.51 (-SiCH₂-), -0.73 (-SiCH₃).

²⁹Si NMR (CDCI₃, 79 MHz): δ/ppm = -18.79 (-SiCH₃), -77.40, -78.83, -78.88, -79.19.

IR (ATR, cm⁻¹): 3072.41, 3050.63 (C-H phenyl), 3027.52 (=C-H), 2954.57 (-C-H), 1594.21, 1430.04 (C=C phenyl), 1263.02 (Si-C), 1083.75, 1028.80 (Si-O-Si), 997.98 (C-H phenyl).

EA: Anal. calcd for $C_{52}H_{49}CIO_{13}Si_9$ (%):C, 53.37, H, 4.22; found: C, 54.62; H, 4.65.

ESI-MS: Calcd. for $C_{52}H_{49}CINa^+O_{13}Si_9$: *m*/z 1191.0677 [M + Na⁺]. Found: 1191.0788.

Figure S 17 ¹H NMR spectrum of SQ-Dm2a in CDCl₃, 300 MHz.

Figure S 19 ²⁹Si NMR spectrum of SQ-Dm2a in CDCl₃, 79 MHz.

SQ-D2b

White solid. Isolated Yield 78%.

All analyses including NMR spectra, FT-IR, MALDI-TOF MS and crystal structure were presented previously.[7]

SQ-Dm2b

Crystal solid. Isolated Yield 6%.

¹H NMR (CDCl₃, 300 MHz): δ /ppm = 7.74-7.25 (m, 40H, Ph), 6.18 (dd, J_{H-H} = 19.6, 15.1 Hz, 1H), 6.02 (dd, J_{H-H} = 15.0, 4.3 Hz, 1H), 5.94 (dd, J_{H-H} = 19.7, 4.3 Hz, 1H), 0.39 (s, 3H, -SiCH₃).

¹³C NMR (CDCl₃, 101 MHz): δ/ppm = 135.40 (-CH=CH2), 134.53, 134.07, 134.33 (Ph), 131.96 (-CH=CH2), 130.48, 130.88, 127.87, 127.99 (Ph), -0.97 (-SiCH₃).

²⁹Si NMR (CDCl₃, 79 MHz): δ/ppm = -31.88 (-(Vi)Si(CH₃)), -77.45, -78.96, -79.11.

IR (ATR): 3072.47, 3051.05 (C-H phenyl), 3027.41 (=C-H), 1594.46, 1430.11 (C=C phenyl), 1264.95 (Si-C), 1086.86, 1028.56 (Si-O-Si), 997.70 (C-H phenyl).

EA: Anal. calcd for C₅₁H₄₆O₁₃Si₉ (%):C, 54.71, H, 4.14; found: C, 54.79; H, 4.23.

ESI-MS: Calcd. for C₅₁H₅₀Na⁺O₁₃Si₉: *m*/*z* 1136.1200 [M + NH₄⁺]. Found: 1136.1191.

Figure S 20 ¹H NMR spectrum of SQ-Dm2b in CDCI₃, 300 MHz.

Figure S 21 ¹³C NMR spectrum of SQ-Dm2b in CDCl₃, 101 MHz.

Figure S 22 ²⁹Si NMR spectrum of SQ-Dm2b in CDCl₃, 79 MHz.

SQ-D2d

Crystal solid. Isolated Yield 70%.

Spectroscopy analyses, including NMR and FT-IR, were presented previously.[8]

EA: Anal. calcd for $C_{56}H_{56}O_{14}Si_{10}$ (%):C, 54.51, H, 4.57; found: C, 54.62; H, 4.65. **ESI-MS**: Calcd. for $C_{56}H_{56}Na^+O_{14}Si_{10}$: m/z 1255.1255 [M + Na⁺]. Found: 1255.1254.

SQ-Dm2d

White solid. Isolated Yield 12%.

¹**H NMR** (CDCl₃, 300 MHz): δ/ppm = 7.74-7.26 (m, 40H, Ph), 5.86-5.72 (m, 1H, -CH=), 4.91-4.77 (m, 2H =CH₂), 1.80 (d, *J*_{H-H} = 8.0 Hz, 2H, -CH₂-), 0.33 (s, 3H, -SiCH₃).

¹³**C NMR** (CDCl₃, 101 MHz): δ /ppm = 134.33, 134.25, 134.08, 132.86 (Ph), 131.94 (-CH=CH₂), 130.89, 130.72, 130.45, 128.00. 127.91 (Ph), 114.96 (-CH=CH₂), 24.73 (-CH₂-), -1.49 (-SiCH₃).

²⁹Si NMR (CDCl₃, 79 MHz): δ/ppm = -22.52 (-(All)Si(CH₃)), -77.46, -78.96, -78.99, -79.35.

IR (ATR): 3072.65, 3050.10 (C-H phenyl), 3024.06 (=C-H), 2961.54, 2923.54 (C-H), 1594.07, 1429.89 (C=C phenyl), 1263.24 (Si-C), 1075.95, 1027.73 (Si-O-Si), 996.87 (C-H phenyl).

EA: Anal. calcd for $C_{52}H_{48}O_{13}Si_9$ (%):C, 55.09, H, 4.27; found: C, 55.12; H, 4.30.

ESI-MS: Calcd. for $C_{52}H_{48}Na^+O_{13}Si_9$: *m*/*z* 1155.0911 [M + Na⁺]. Found: 1155.0910.

Figure S 23 ¹H NMR spectrum of SQ-Dm2d in CDCl₃, 300 MHz.

a bare precised as for the first for the first order to the first order of the first of the firs

45 40 35 30 25 20 15 10 5 0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 ppm

Figure S 25 ²⁹Si NMR spectrum of SQ-Dm2d in CDCl₃, 79 MHz.

4.1. Silylative coupling of SQ-T1b with styrene- Postreaction mixture

Homo-Hetero coupled product (HHCP)

Homo coupled product (HCP)- SQ-T1b-SC

White solid.

¹H NMR (300 MHz, CDCl₃): δ /ppm = 7.44-6.96 (m, Ph), 6.81 (d, J = 19.4 Hz, HHCP), 6.39 (d, J = 19.4 Hz, HHCP), 6.25 (s, =CH₂, HCP), 6.21 (s, =CH₂, HHCP), 0.25 (s, -Si(CH₃)₂, HHCP), 0.23 (s, -Si(CH₃)₂, HCP), 0.13 (s, -Si(CH₃)₂, HHCP).

¹³**C NMR** (101 MHz, CDCl₃): δ/ppm = 155.38 (-C=CH₂), 144.61 (-C=CH₂), 140.36, 138.17, 134.27, 133.23, 131.80, 130.16, 129.94, 128.41, 127.61, 126.74, 0.93 (-Si(CH₃)₂, HCP), 0.87 (-Si(CH₃)₂, HHCP), 0.82 (-Si(CH₃)₂, HHCP).

²⁹Si NMR (79 MHz, CDCl₃): δ/ppm = 2.65 (-Si(CH₃)₂, HCP), 1.79 (-Si(CH₃)₂, HHCP), 0.54 (-Si(CH₃)₂, HHCP), -75.81, -78.29, -78.50, -79.45, -80.27.

Homo-hetero-coupledproduct: ESI-MS: Calcd. for C₇₄H₈₀Na⁺O₁₄Si₁₂: *m/z* 1551.2671 [M + Na]⁺. Found: 1551.2693 **Homo-coupled product (SQ-T1b-SC): ESI-MS**: Calcd. for C₆₀H₆₈Na⁺O₁₄Si₁₂: *m/z* 1371.11732 [M + Na]⁺. Found: 1371.1751

Figure S 26 ¹H NMR spectrum of mixture after SC SQ-T1b in CDCl₃, 300 MHz.

Figure S 28 ²⁹Si NMR spectrum of mixture after SC SQ-T1b in CDCI₃.

4.2 Silylative coupling of SQ-Td1c with styrene- Postreaction mixture

Hetero coupled product (HCP)

Homo coupled product (HCP)- SQ-Td1c-SC

White solid.

 1 H NMR (CDCl₃, 300 MHz): δ /ppm = 7.66-7.04 (m, Ph), 6.90 (d, J = 19.2 Hz), 6.54 (d, J = 19.2 Hz).

¹³C NMR (CDCl₃, 101 MHz): δ/ppm = 150.17, 148.46, 137.92, 135.21, 135.02, 134.27, 132.84, 132.37, 130.56, 130.45, 130.31, 130.19, 130.02, 129.78, 128.39, 127.96, 127.81, 127.57, 127.07, 123.80.

²⁹Si NMR (CDCl₃, 79 MHz): δ /ppm = -19.06 (HCP), -21.91 (HCP), -74.91, -76.16, -76.24, -77.65, -78.06.

HOMO: ESI-MS: Calcd. for $C_{74}H_{62}Na^+O_{13}Si_{10}$: m/z 1461.1775 [M + Na]⁺. Found: 1461.1777. **HETERO: ESI-MS**: Calcd. for $C_{88}H_{74}Na^+O_{13}Si_{10}$: m/z 1641.2714 [M + Na]⁺. Found: 1641.2760.

Figure S 29 ¹H NMR spectrum of mixture after SC of SQ-Td1c in CDCI₃, 300 MHz.

4.3 Tests for silylative homo-coupling of SQ-T1b vs. SQ-Td1c

Scheme S 1. The synthetic path for silylative homo-coupling of SQ-T1b vs. SQ-Td1c

SQ-T1b-SC

White solid. Isolated Yield 89%.

¹H NMR (300 MHz, CDCl₃): δ/ppm = 7.42-7.03 (m, 40H, Ph), 6.23 (s, 4H, =CH₂), 0.21 (s, 24H, -Si(CH₃)₂). ¹³C NMR (101 MHz, CDCl₃): δ/ppm = 155.35 (-C=CH₂), 140.38 (-C=CH₂), 134.27, 134.16, 133.21, 131.79, 130.16, 129.94, 127.61 (Ph), 0.94, 0.91 (-Si(CH₃)₂). ²⁹Si NMR (79,5 MHz, CDCl₃): δ/ppm = 2.63 (-Si(CH₃)₂), -78.52, -80.30. **IR (ATR)**: 3073.10, 3051.22 (C-H phenyl), 3006.66 (=C-H), 2955.95, 2924.88 (C-H), 1593.76, 1429.75 (C=C phenyl), 1256.65 (Si-C), 1129.89, 1075.72, 1029.16(Si-O-Si), 998.43 (C-H phenyl). **EA:** Anal. calcd for C₆₀H₆₆O₁₄Si₁₂ (%):C, 53.37, H, 5.08; found: C, 53.42; H, 5.13. **ESI-MS**: Calcd. for C₆₀H₆₈Na⁺O₁₄Si₁₂ : *m/z* 1371.1732 [M + Na⁺]. Found: 1371.1725.

48

Figure S 35 ²⁹Si NMR spectrum of SQ-T1b-SC in CDCl₃, 79 MHz.

SQ-Td1c-SC

White solid. Isolated Yield 85%.

¹**H NMR** (CDCl₃, 300 MHz): δ/ppm = 7.65-7.09 (m, 62H, Ph, CH),

¹³**C NMR** (CDCl₃, 101 MHz): δ/ppm = 150.16 (H**C**=CH), 135.20 (Ph), 135.01, 134.26, 132.36 (HC=**C**H), 130.90-130.02 (Ph), 128.01, 127.95, 127.58.

²⁹Si NMR (CDCl₃, 79 MHz): δ/ppm = -21.93, -76.17, -76.27, -78.93.

IR (ATR): 3070.70, 3049.14 (C-H phenyl), 3024.76 (=C-H), 1593.70, 1428.84 (C=C phenyl), 1263.54 (Si-C), 1062.49, 1027.24 (Si-O-Si), 997.46 (C-H phenyl).

EA: Anal. calcd for $C_{74}H_{62}O_{13}Si_{10}$ (%):C, 61.72, H, 4.34; found: C, 61.96; H, 4.65.

ESI-MS: Calcd. for $C_{74}H_{62}Na^+O_{13}Si_{10}$: *m*/z 1461.1775 [M + Na⁺]. Found: 1461.1763.

Figure S 36 ¹H NMR spectrum of SQ-Td1c-SC in CDCl₃, 300 MHz.

Figure S 42 ¹³C NMR DEPT 90 spectrum of SQ-Td1c-SC in CDCl₃, 75 MHz.

Figure S 38 ²⁹Si NMR spectrum of SQ-Td1c-SC in CDCl₃, 79 MHz.

5. Spectrometric analysis

5.1. MALDI-TOF MS analysis

Compound formula	Calcd. m/z	Measur. m/z	Error [ppm]				
Sample a							
C ₅₈ H ₆₄ Cl ₂ O ₁₃ Si ₁₀ Na ⁺	1341.1309	1341.1297	0.9				
$C_{58}H_{66}CI_2O_{14}Si_{10}Na^+$	1359.1414	1359.1413	0.1				
C ₆₃ H ₇₇ Cl ₃ O ₁₄ Si ₁₁ Na ⁺	1493.1733	1493.1757	1.6				
Sample b							
$C_{58}H_{64}Cl_2O_{13}Si_{10}Na^+$	1341.1309	1341.1231	5.8				
C ₅₈ H ₆₆ Cl ₂ O ₁₄ Si ₁₀ Na ⁺	1359.1414	1359.1320	6.9				
C ₆₃ H ₇₇ Cl ₃ O ₁₄ Si ₁₁ Na ⁺	1493.1733	1493.1713	1.3				
C ₆₈ H ₈₈ Cl ₄ O ₁₄ Si ₁₂ Na ⁺	1627.2052	1627.1994	3.7				
Sample c							
C ₅₈ H ₆₄ Cl ₂ O ₁₃ Si ₁₀ Na ⁺	1341.1309	1341.1266	3.2				
C ₅₈ H ₆₆ Cl ₂ O ₁₄ Si ₁₀ Na ⁺	1359.1414	1359.1298	8.5				
C ₆₃ H ₇₇ Cl ₃ O ₁₄ Si ₁₁ Na ⁺	1493.1733	1493.1686	3.1				
C ₆₈ H ₈₈ Cl ₄ O ₁₄ Si ₁₂ Na ⁺	1627.2052	1627.2065	0.8				
Sample d							
C ₅₈ H ₆₄ Cl ₂ O ₁₃ Si ₁₀ Na ⁺	1341.1309	1341.1317	0.6				
C ₆₃ H ₇₇ Cl ₃ O ₁₄ Si ₁₁ Na ⁺	1493.1733	1493.1766	2.2				
C ₆₈ H ₈₈ Cl ₄ O ₁₄ Si ₁₂ Na ⁺	1627.2052	1627.2065	0.8				
	Sample e						
C ₅₈ H ₆₄ Cl ₂ O ₁₃ Si ₁₀ Na ⁺	1341.1309	1341.1387	6				
C ₆₈ H ₈₈ Cl ₄ O ₁₄ Si ₁₂ Na ⁺	1627.2052	1627.2049	0.2				

 Table S 2 Observed MALDI-TOF peaks found for sodium adducts [M+Na]+for HC reaction of SQ-4OH with 1a.

5.2. ESI-MS analysis

The procedure for the preparation of ESI- MS specimens was performed in analogous methodology as MALDI-TOF MS and the description of respective samples is below:

f) - after 15 minutes from the start of the silane (1a) dropwise addition,

g) - just after complete addition of 1a,

h) - 1 h after complete addition of 1a,

i) - 2 h after complete addition of 1a,

j) - 12 h after complete addition of 1a,

k) - 24 h after complete addition of 1a.

All of the specimens were taken from the reaction mixture, filtrated (of triethylammonium chloride salt) and evaporated under reduced pressure. They were then dissolved in DCM/methanol solution and measured by ESI-MS. For this analysis, the sodium adducts were mainly observed, but for the incompletely condensed product with three 3-chloropropyl groups, the adducts with Na⁺ and Et₃NH⁺ were also present. Despite the filtration of the reaction mixture, the ESI-MS analysis showed the presence of traces of amine residue. Signals derived from Ph8T8 by-product visible 1H NMR spectra of the post-reaction mixture are again omitted on MS spectra's for clearance (Ph₈T₈ [M+Na]+ 1055.3).

Figure S 39 Stacked ESI-MS spectra for HC reaction of SQ-40H with 1a within time (a - e).

Table S 3 Observed ESI-MS peaks found for sodium/amine adducts [M+Na/Et₃NH]⁺ for HC reaction of SQ-4OH with 1a

Compound formula	Calcd. m/z	Measur. m/z	Error [ppm]					
Sample f								
C ₅₃ H ₅₃ ClO ₁₃ Si ₉ Na ⁺	1207.0990	1207.0927	1.5					
$C_{58}H_{64}Cl_2O_{13}Si_{10}Na^+$	1341.1309	1341.1294	1.2					
C ₅₈ H ₆₆ Cl ₂ O ₁₄ Si ₁₀ Na ⁺	1359.1415	1359.1433	1.3					
C ₆₃ H77Cl ₃ O14Si11Na ⁺	1493.1733	1493.1715	1.2					
C ₆₉ H ₉₃ +Cl ₃ NO ₁₄ Si ₁₁	1572.3118	1572.3091	1.8					
C ₆₈ H ₈₈ Cl ₄ O ₁₄ Si ₁₂ Na ⁺	1627.2052	1627.2048	0.2					
	Sample	g						
C ₅₃ H ₅₃ ClO ₁₃ Si ₉ Na ⁺	1207.0990	1207.0953	3.1					
C ₅₈ H ₆₄ Cl ₂ O ₁₃ Si ₁₀ Na ⁺	1341.1309	1341.1285	1.8					
$C_{58}H_{66}Cl_2O_{14}Si_{10}Na^+$	1359.1414	1359.1384	2.3					
C ₆₃ H ₇₇ Cl ₃ O ₁₄ Si ₁₁ Na ⁺	1493.1733	1493.1696	2.5					
C ₆₉ H ₉₃ ⁺ Cl ₃ NO ₁₄ Si ₁₁	1572.3118	1572.3067	3.2					
C ₆₈ H ₈₈ Cl ₄ O ₁₄ Si ₁₂ Na ⁺	1627.2052	1627.2023	1.8					
Sample h								
$C_{58}H_{64}Cl_2O_{13}Si_{10}Na^+$	1341.1309	1341.1311	0.1					
$C_{58}H_{66}Cl_2O_{14}Si_{10}Na^+$	1359.1414	1359.1399	1.2					
C ₆₃ H ₇₇ Cl ₃ O ₁₄ Si ₁₁ Na ⁺	1493.1733	1493.1727	0.4					
C ₆₉ H ₉₃ ⁺ Cl ₃ NO ₁₄ Si ₁₁	1572.3118	1572.3099	1.2					
C ₆₈ H ₈₈ Cl ₄ O ₁₄ Si ₁₂ Na ⁺	1627.2052	1627.2040	0.7					
Sample i								
$C_{58}H_{64}Cl_2O_{13}Si_{10}Na^+$	1341.1309	1341.1292	1.3					
$C_{63}H_{77}CI_{3}O_{14}Si_{11}Na^{+}$	1493.1733	1493.1700	2.2					
C ₆₉ H ₉₃ ⁺ Cl ₃ NO ₁₄ Si ₁₁	1572.3118	1572.3075	2.7					
$C_{68}H_{88}CI_4O_{14}Si_{12}Na^+$	1627.2052	1627.2015	2.3					
	Sample	j						
$C_{58}H_{64}Cl_2O_{13}Si_{10}Na^+$	1341.1309	1341.1301	0.6					
$C_{63}H_{77}CI_{3}O_{14}Si_{11}Na^{+}$	1493.1733	1493.1717	1.1					
C ₆₉ H ₉₃ +Cl ₃ NO ₁₄ Si ₁₁	1572.3118	1572.3094	1.5					
$C_{68}H_{88}Cl_4O_{14}Si_{12}Na^+$	1627.2052	1627.2028	1.4					
	Sample	k						
C ₅₈ H ₆₄ Cl ₂ O ₁₃ Si ₁₀ Na ⁺	1341.1309	1341.1301	0.7					
C ₆₈ H ₈₈ Cl ₄ O ₁₄ Si ₁₂ Na ⁺	1627.2052	1627.2028	0.6					

6. TGA/DSC analysis

Prod.	Mass loss Terr	perature [°C]	Residue at 1000 °C [%]		
Abbreviation	Td ^{5%}	T _d ^{10%}			
SQ-T1a	292	314	11		
SQ-Td1a	291	371	13		
SQ-D2a	306	370	43		
SQ-Dm2a	369	405	35		
SQ-T1b	381	416	37		
SQ-Td1b	397	437	44		
SQ-D2b	391	530	78		
SQ-Dm2b	495	551	79		
SQ-T1c	423	456	31		
SQ-Td1c	431	464	39		
SQ-T1d	373	413	27		
SQ-Td1d	379	403	32		
SQ-D2d	393	429	57		
SQ-Dm2d	397	428	48		
SQ-T1b-SC	386	415	48		
SQ-Td1c-SC	451	473	36		

 $\label{eq:stable} \textbf{Table S 4} \ Thermal \ properties \ of \ obtained \ compounds \ measured \ in \ N_2.$

Table S 5 Melting points of obtained compounds - assigned by DSC method

Prod. Abbreviation	Melting point
SQ-T1a	98.67 °C
SQ-Td1a	133.00 °C
SQ-D2a	272.00 °C
SQ-Dm2a	233.00 °C
SQ-T1b	146.67 °C
SQ-Td1b	233.50 °C
SQ-D2b	214.83 °C
SQ-Dm2b	238.17 °C
SQ-Td1c	169.00 °C
SQ-T1d	109.50 °C
SQ-Td1d	145.67 °C
SQ-D2d	220.00 °C
SQ-Dm2d	211.83 °C
SQ-T1b-SC	233.17 °C
SQ-Td1c-SC	291.44 °C

Figure S 40 TGA analysis of open- and closed-cage SQs with 3-chloropropyl group(s) performed in N2.

Figure S 42 TGA analysis of HC products performed in a nitrogen.

Figure S 43 TGA analysis of HC products performed in a nitrogen.

Figure S 44 TGA analysis of SC products performed in a nitrogen.

Figure S 45 TGA analysis of SC products performed in a nitrogen.

7. X-ray Analysis

	Table	S 6	Crystal	data,	data	collection	and	structure	refinement
--	-------	-----	---------	-------	------	------------	-----	-----------	------------

Compound	SQ-T1a	SQ-Td1a	SQ-Td1b	SQ-Td1c
Formula	$C_{68}H_{88}CI_4O_{14}Si_{12}$	$C_{58}H_{64}Cl_2O_{13}Si_{10}$	C ₅₆ H ₅₈ O ₁₃ Si ₁₀	C ₇₆ H ₆₆ O ₁₃ Si ₁₀
Formula weight	1608.26	1320.89	1219.92	1468.18
Crystal system	triclinic	triclinic	Monoclinic	triclinic
Space group	P-1	P-1	Pn	P-1
a(Å)	12.8421(5)	11.2359(4)	10.98072(18)	13.7102(3)
b(Å)	16.9319(6)	14.4348(4)	10.69865(19)	14.9905(3)
c(Å)	18.6056(7)	20.6432(6)	26.0350(4)	20.0608(4)
α(°)	90.263(3)	104.503(3)	90	97.619(2)
β (°)	91.075(3)	91.243(2)	101.2833(16)	92.684(2)
γ(°)	93.084(3)	100.119(3)	90	115.487(2)
V(Å ³)	4039.0(3)	3183.38(18)	2999.45(9)	3663.91(14)
Z	2	2	2	2
D _x (g cm ⁻³)	1.322	1.378	1.351	1.331
F(000)	1688	1380	1276	1532
μ(mm ⁻¹)	0.382	0.351	0.280	0.242
Reflections:				
collected	43342	23840	19596	32769
unique (R _{int})	18920 (0.0404)	12340 (0.0227)	9591 (0.0172)	15021 (0.0186)
with I>2σ(I)	16184	10651	9264	14262
R(F) [I>2σ(I)]	0.0360	0.0344	0.0272	0.0660
wR(F ²) [I>2σ(I)]	0.0899	0.0839	0.0702	0.1888
R(F) [all data]	0.0458	0.0418	0.0288	0.0681
wR(F ²) [all data]	0.0924	0.0885	0.0715	0.1912
Goodness of fit	1.028	1.024	1.033	0.997
max/min ∆ (e·Å ⁻³)	0.49/-0.36	0.66/-0.61	0.91/-0.23	0.77/-0.69
CCDC number	2041825	2041826	2058969	2051014
Compound	SQ-T1d	SQ-Td1d	SQ-Dm2a	SQ-Dm2b
Formula	C ₆₈ H ₈₄ O ₁₄ Si ₁₂	C ₅₈ H ₆₂ O ₁₃ Si ₁₀	C ₅₂ H ₄₉ CIO ₁₃ Si ₉	C ₅₁ H ₄₆ O ₁₃ Si ₉
Formula weight	1462.43	1247.97	1608.1170.17	1119.69
Crystal system	monoclinic	triclinic	monoclinic	monoclinic
Space group	P2/n	P-1	P21/c	P21/c
a(Å)	12.8971(3)	11.0889(5)	14.0582(5)	17.6363(2)
b(Å)	18.3850(4)	14.6164(5)	16.8552(7)	10.91209(17)
c(Å)	16.7859(4)	20.2859(8)	23.5988(9)	27.9552(4)
α(°)	90	75.800(3)	90	90
β(°)	91.586(2)	85.746(3)	98.552(3)	93.9393(13)
γ(°)	90	75.825(4)	90	90
V(Å ³)	3978.63(16)	3090.1(2)	5529.6(4)	5367.24(13)
Z	2	2	4	4
D _x (g cm ⁻³)	1.221	1.341	1.406	1.386
F(000)	1544	1308	2432	2328
μ(mm ⁻¹)	2.316	0.274	0.327	0.285
Reflections:				
collected	19489	23022	19474	22158
unique (R _{int})	8155 (0.0405)	11955 (0.0160)	9712 (0.0370)	10388 (0.0198)

with I>2σ(I)	7386	10538		6938		8437	
R(F) [I>2σ(I)]	0.0936	0.0310		0.0673		0.0419	
wR(F ²) [I>2σ(I)]	0.2428	0.0772		0.1767		0.0965	
R(F) [all data]	0.0997	0.0374		0.0954		0.0565	
wR(F ²) [all data]	0.2452	0.0810		0.1925		0.1031	
Goodness of fit	0.994	1.048		1.004		1.045	
max/min ∆ (e·Å ⁻³)	1.23/-0.68	0.40/-0.28		0.50/-1.13		0.44/-0.38	
CCDC number	2041827	2041828		2041829		2041830	
Compound	SQ-Dm2d		SQ-T1b-SC		SQ-	Td1c-SC	
Formula	C ₅₂ H ₄₈ O ₁₃ Si ₉		C ₆₀ H ₆₈ O ₁₄ Si ₁₂		C ₇₄	H ₆₂ O ₁₃ Si ₁₀	
Formula weight	1133.71		1350.22		1440	0.13	
Crystal system	Monoclinic		triclinic		mon	noclinic	
Space group	P21/c		P-1		P21/	/c	
a(Å)	14.2559(4)		13.1911(6)		10.9	9318(3)	
b(Å)	16.7794(5)		13.5671(5)		20.1	891(7)	
c(Å)	23.8083(6)		13.6405(6)		33.9	9032(10)	
α(°)	90		61.188(4)		90		
β (°)	98.576(2)		68.229(4)		91.4	196(3)	
γ(°)	90		77.731(3)		90		
V(Å ³)	5631.4(3)		1984.70(17)		748	0.0(4)	
Z	4		1		4		
D _x (g cm ⁻³)	1.337		1.130		1.27	9	
F(000)	2360		708		300	0	
μ(mm -1)	0.273		0.247		0.23	36	
Reflections:							
collected	25474		15301		318	15	
unique (R _{int})	9885 (0.0193)		7733 (0.0145))	131	21 (0.0296)	
with I>2o(I)	7522		6733		7494	4	
R(F) [I>2σ(I)]	0.0534		0.0302		0.06	648	
wR(F ²) [I>2σ(I)]	0.1511		0.0784		0.17	705	
R(F) [all data]	0.0759		0.0360		0.11	36	
wR(F ²) [all data]	0.1638		0.0817		0.19	990	
Goodness of fit	1.079		1.027		0.98	34	
max/min ∆ (e·Å ⁻³)	0.97/-0.39		0.36/-0.28		0.30	0/-0.31	
CCDC number	2058970		2041831		204	3903	

Figure S 51. A perspective view of the molecule SQ-T1d. Ellipsoids are drawn at the 50% probability level, hydrogen atoms are shown as spheres of arbitrary radii.

Figure S 52 A perspective view of the molecule SQ-Td1b. Ellipsoids are drawn at the 50% probability level, hydrogen atoms are shown as spheres of arbitrary radii.

Figure S 53 A perspective view of the molecule SQ-Td1c. Ellipsoids are drawn at the 50% probability level, hydrogen atoms are shown as spheres of arbitrary radii.

Figure S 54 A perspective view of the molecule SQ-Td1d. Ellipsoids are drawn at the 50% probability level, hydrogen atoms are shown as spheres of arbitrary radii.

Figure S 46 A perspective view of the molecule SQ-Dm2b. Ellipsoids are drawn at the 50% probability level, hydrogen atoms are shown as spheres of arbitrary radii.

Figure S 47 A perspective view of the molecule SQ-Dm2d. Ellipsoids are drawn at the 50% probability level, hydrogen atoms are shown as spheres of arbitrary radii.

Figure S 57 A perspective view of the molecule SQ-T1b-SC. Ellipsoids are drawn at the 50% probability level, hydrogen atoms are shown as spheres of arbitrary radii.

Figure S 58 A perspective view of the molecule SQ-Td1c-SC. Ellipsoids are drawn at the 50% probability level, hydrogen atoms are shown as spheres of arbitrary radii.

8. References

- [1] CrysAlisPro 1.171.40.81a. 2020, p (Rigaku Oxford Diffraction)
- [2] G.M. Sheldrick, Acta Crystallogr. Sect. A Found. Crystallogr. 2015, 71, 3–8.
- [3] G. M. Sheldrick, Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8.
- [4] A. L. Spek, Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 9–18.
- [5] K. Mituła, J. Duszczak, D. Brząkalski, B. Dudziec, M. Kubicki, B. Marciniec, Chem. Commun. 2017, 53, 10370–10373.
- [6] V. Ervithayasuporn, X. Wang, Y. Kawakami, *Chem. Commun.* **2009**, 5130-5132.
- [7] M. Walczak, R. Januszewski, M. Majchrzak, M. Kubicki, B. Dudziec, B. Marciniec, New J. Chem. 2017, 41, 3290–3296.
- [8] K. Mituła, B. Dudziec, B. Marciniec, J. Inorg. Organomet. Polym. Mater., 2018, 28, 500-507.