Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2021

Electronic Supplementary Information

Effects of molecular geometry on the efficiency of intramolecular charge transferbased luminescence in *o*-carboranyl-substituted 1*H*-phenanthro[9,10-*d*]imidazoles

Sehee Im,^a Chan Hee Ryu,^a Mingi Kim,^a Dong Kyun You,^a Sanghee Yi,^a Wonchul Lee,^a and Kang Mun Lee^{*a}

^{*a*} Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea

Contents

NMR Spectra for oPC, mPC, pPC, PC and their precursors	S2–S19
Crystallographic data and parameters for oPC, mPC, pPC, and PC	S20
Selected bond lengths (Å) and angles (°) for <i>o</i> PC, <i>m</i> PC, <i>p</i> PC, and PC ······	S21
UV-vis absorption and PL spectra for PPI and PI in THF	S22
Theoretical calculation details for <i>o</i> PC, <i>m</i> PC, <i>p</i> PC, and PC	S23–S34
PL spectra of oPC and mPC in various organic solvents	S35
PL spectra of <i>o</i>PC in THF/distilled water mixtures	S35
Emission decay curves for oPC, mPC, pPC, and PC in film states	S36
Low energy electronic transitions data for pPC and PC as Ψ was varied	S37
Cartesian coordinates of oPC, mPC, pPC, and PC in each optimized geometry	S38–S45

Fig. S1 ¹H (top) and ¹³C (bottom) NMR spectra of *o*PBr in CD₂Cl₂ (* from residual CH₂Cl₂ in CD₂Cl₂).

Fig. S2 ¹H (top) and ¹³C (bottom) NMR spectra of *m*PBr in CD_2Cl_2 (* from residual CH_2Cl_2 in CD_2Cl_2).

Fig. S3 ¹H (top) and ¹³C (bottom) NMR spectra of *p*PBr in CD_2Cl_2 (* from residual CH_2Cl_2 in CD_2Cl_2).

Fig. S4 ¹H (top) and ¹³C (bottom) NMR spectra of PI in CDCl₃ (* from residual CHCl₃ in CDCl₃).

Fig. S5 ¹H (top) and ¹³C (bottom) NMR spectra of PBr in CD₂Cl₂ (* from residual CH₂Cl₂ in CD₂Cl₂).

Fig. S6 ¹H (top) and ¹³C (bottom) NMR spectra of *o*PA in CD₂Cl₂ (* from residual CH₂Cl₂ in CD₂Cl₂).

Fig. S7 ¹H (top) and ¹³C (bottom) NMR spectra of *m*PA in CD₂Cl₂ (* from residual CH₂Cl₂ in CD₂Cl₂).

Fig. S8 ¹H (top) and ¹³C (bottom) NMR spectra of *p*PA in CD₂Cl₂ (* from residual CH₂Cl₂ in CD₂Cl₂).

Fig. S9 ¹H (top) and ¹³C (bottom) NMR spectra of PA in CD₂Cl₂ (* from residual CH₂Cl₂ in CD₂Cl₂).

Fig. S10 ¹H{¹¹B} (top) and ¹³C (bottom) NMR spectra of *o*PC in THF- d_8 (* from residual THF in THF- d_8).

Fig. S11 ¹¹B{¹H} NMR spectra of oPC in THF- d_8 .

Fig. S12 ¹H{¹¹B} (top) and ¹³C (bottom) NMR spectra of *m*PC in CD₂Cl₂ (* from residual CH₂Cl₂ in CD₂Cl₂).

Fig. S13 ¹¹B{¹H} NMR spectra of mPC in CD_2Cl_2 .

Fig. S14 ¹H{¹¹B} (top) and ¹³C (bottom) NMR spectra of pPC in CD₂Cl₂ (* from residual CH₂Cl₂ in CD₂Cl₂).

Fig. S15 ¹¹B{¹H} NMR spectra of pPC in CD₂Cl₂.

Fig. S16 ${}^{1}H{}^{11}B{}$ (top) and ${}^{13}C$ (bottom) NMR spectra of PC in CD₂Cl₂ (* from residual CH₂Cl₂ in CD₂Cl₂).

Fig. S17 $^{11}B{^{1}H}$ NMR spectra of PC in CD₂Cl₂.

Fig. S18 ¹H (top) and ¹³C (bottom) NMR spectra of PPI in CD₂Cl₂ (* from residual CH₂Cl₂ in CD₂Cl₂).

Compound	PC	oPC ·CH ₂ Cl ₂	mPC·CH ₃ OH	рРС
Formula	$C_{29}H_{28}B_{10}N_2$	$C_{35}H_{32}B_{10}N_2 \cdot CH_2Cl_2$	$C_{35}H_{32}B_{10}N_2 \cdot CH_3OH$	$C_{35}H_{32}B_{10}N_2$
Formula weight	512.63	673.65	620.77	588.72
Crystal system	Triclinic	Monoclinic	Orthorhombic	Monoclinic
Space group	P ₋₁	P21/c	Pna2 ₁	$P2_1/c$
a (Å)	10.754(2)	14.133(3)	17.1475(6)	17.897(4)
$b(\mathbf{A})$	16.376(3)	18.494(4)	11.1715(4)	13.095(3)
<i>c</i> (Å)	18.497(4)	13.764(3)	17.1764(6)	13.490(3)
α (°)	64.13(3)	90	90	90
β (°)	73.49(3)	104.15(3)	90	99.45(3)
γ (°)	88.75(3)	90	90	90
$V(Å^3)$	2790.3(12)	3488.4(13)	3290.4(2)	3118.6(11)
Z	4	4	4	4
$\rho_{\rm calc}({\rm g~cm^{-3}})$	1.220	1.283	1.253	1.254
μ (mm ⁻¹)	0.065	0.217	0.070	0.068
F(000)	1064	1392	1296	1224
<i>T</i> (K)	293(2)	293(2)	173(2)	293(2)
Scan mode	φ and ω -scan	φ and ω -scan	φ and ω -scan	φ and ω -scan
	-13 < h < 13,	-18 < h < 17,	-22 < h < 22,	-23 < h < 23,
<i>hkl</i> range	-21 < k < 21,	-24 < k < 24,	-13 < k < 14,	-17 < k < 17,
	-24 < l < 23	-17 < l < 14	-22 < l < 17	-15 < l < 17
Measd reflns	26198	34635	32339	30643
Unique reflns $[R_{int}]$	12680 [0.1592]	8009 [0.2162]	7017 [0.0561]	7143 [0.0307]
Reflns used for refinement	12680	8009	7017	7143
Refined parameters	739	451	446	424
R_1^{a} (I > 2 σ (I))	0.0789	0.0981	0.0390	0.0481
wR_2^{b} all data	0.1718	0.2566	0.0979	0.1396
GOF on F^2	0.926	1.039	1.046	1.009
$\rho_{\rm fin}$ (max/min) (e Å ⁻³)	0.212, -0.170	0.413, -0.359	0.232, -0.156	0.373, -0.189
${}^{a}\mathbf{R}_{1} = \sum Fo$	$ Fc /\sum Fc $	Fo . ${}^{b}wR_2 =$	$= \{ \sum w(Fo^2) \}$	$- Fc^{2})^{2}]/[\sum w(Fo^{2})^{2}]\}^{1/2}$

 Table S1 Crystallographic data and parameters for PC, oPC, mPC, and pPC.

Compound	РС	oPC	mPC	рРС			
length (Å)							
C1–C2	1.721(5)	1.757(5)	1.723(3)	1.7278(16)			
C1–C24	1.476(5)	_	_	_			
C2–C3	1.477(5)	1.507(6)	1.504(3)	1.5114(15)			
C1–C30	_	1.494(6)	1.510(3)	1.5034(16)			
angles (°)							
C24–C1–C2	119.8(3)	_	_	_			
С30-С1-С2	_	119.6(4)	117.34(16)	119.59(9)			
C1–C2–C3	119.0(3)	117.8(3)	118.93(16)	120.82(9)			
C3-N1-C4	105.7(3)	_	_	_			
N1-C4-C5	105.8(4)	_	_	_			
C4-C5-N2	110.7(4)	_	_	_			
C5-N2-C3	106.4(4)	_	_	_			
N2-C3-N1	111.4(4)	_	_	_			
C9-N1-C10	-	105.8(4)	106.86(17)	106.36(9)			
N1-C10-C11	-	104.3(4)	105.06(18)	105.23(10)			
C10-C11-N2	-	112.3(4)	111.22(18)	111.18(10)			
C11-N2-C9	-	104.7(3)	105.14(18)	105.11(10)			
N2-C9-N1	_	112.7(4)	111.72(18)	112.08(10)			

Fig. S19 UV-vis absorption (left side) and PL spectra (right side) for (a) 1,2-diphenyl-1*H*-phenanthro[9,10-*d*]imidazole (PPI, $\lambda_{ex} = 329$ nm) and (b) 1-phenyl-1*H*-phenanthro[9,10-*d*]imidazole (PI, $\lambda_{ex} = 337$ nm). Black line: absorption spectra in THF (3.0 × 10⁻⁵ M), blue line: PL spectra in THF (3.0 × 10⁻⁵ M) at 298 K, and green line: PL spectra in THF (3.0 × 10⁻⁵ M) at 77 K.

Computational calculation details

Fig. S20 The selected frontier orbitals of *o***P**C from B3LYP calculations (Isovalue = 0.04 a.u.) at the ground state (S_0) and first singlet excited state (S_1) optimized geometries in THF.

Table S3 Computed absorption wavelengths (λ_{calc} in nm) and oscillator strengths ($f_{calc.}$) for *o***PC** from TD-B3LYP calculations using the B3LYP geometries at the ground state (S₀) and first singlet excited state (S₁) optimized geometries in THF

st	ate	$\lambda_{ m calc}$ /nm	$f_{ m calc}$	Major contribution
				S_0
	1	347.71	0.0692	HOMO \rightarrow LUMO (96.7%)
	2	321.07	0.0385	HOMO-1 \rightarrow LUMO+3 (10.8%)
				HOMO \rightarrow LUMO+1 (52.5%)
				HOMO \rightarrow LUMO+2 (28.0%)
	3	312.27	0.0417	HOMO \rightarrow LUMO+1 (69.5%)
				HOMO \rightarrow LUMO+2 (21.9%)
	4	300.10	0.0106	HOMO-1 \rightarrow LUMO (12.3%)
				HOMO-1 \rightarrow LUMO+2 (10.5%)
				HOMO \rightarrow LUMO+3 (61.6%)
	5	296.41	0.0211	HOMO-1 \rightarrow LUMO (83.8%)
				HOMO \rightarrow LUMO+3 (11.4%)
				\mathbf{S}_1
	1	570.86	0.2153	HOMO \rightarrow LUMO (99.8%)
	2	457.76	0.0002	HOMO-1 \rightarrow LUMO (99.4%)
	3	425.58	0.0003	HOMO-2 \rightarrow LUMO (98.4%)
	4	422.03	0.0088	HOMO-4 \rightarrow LUMO (10.3%)
				HOMO-3 \rightarrow LUMO (81.1%)
	5	413.02	0.0910	HOMO-4 \rightarrow LUMO (84.3%)
				HOMO-3 \rightarrow LUMO (8.0%)

0	()	0	(1) 1	0		
	E (eV)	carborane -phenyl	o-carborane	bridged -phenyl	phenanthro -imidazole	N-phenyl
			\mathbf{S}_0			
LUMO+3	-0.86	3.4	5.0	5.0	79.7	6.9
LUMO+2	-0.97	2.8	2.5	4.2	87.7	2.8
LUMO+1	-1.11	25.4	15.9	33.9	21.2	3.6
LUMO	-1.50	20.8	37.8	37.9	2.6	0.9
HOMO	-5.56	0.0	0.6	2.4	96.7	0.3
HOMO-1	-6.06	0.0	0.1	0.1	99.2	0.6
HOMO-2	-6.74	0.0	0.5	0.6	92.1	6.8
НОМО-3	-7.00	13.9	1.5	26.5	16.4	41.7
			S_1			
LUMO+3	-0.85	5.2	4.2	47.7	36.7	6.2
LUMO+2	-0.90	0.8	0.5	4.7	86.7	7.3
LUMO+1	-1.02	2.4	2.1	16.1	74.7	4.7
LUMO	-3.58	8.7	81.5	9.3	0.3	0.3
HOMO	-5.36	0.0	0.5	2.0	97.2	0.3
HOMO-1	-6.11	0.0	0.1	0.1	99.3	0.5
HOMO-2	-6.72	0.1	0.3	0.3	95.1	4.2
НОМО-3	-7.01	47.5	12.9	25.5	3.8	10.3

Table S4 Molecular orbital energies (in eV) and molecular orbital distributions (in %) of oPC at the ground state (S₀) and first singlet excited state (S₁) optimized geometries in THF

Fig. S21 The selected frontier orbitals of *m*PC from B3LYP calculations (Isovalue = 0.04 a.u.) at the ground state (S₀) and first singlet excited state (S₁) optimized geometries in THF.

Table S5 Computed absorption wavelengths (λ_{calc} in nm) and oscillator strengths ($f_{calc.}$) for *m*PC from TD-B3LYP calculations using the B3LYP geometries at the ground state (S₀) and first singlet excited state (S₁) optimized geometries in THF

state	$\lambda_{\rm calc}$ /nm	$f_{\rm calc}$	Major contribution
			S ₀
1	346.93	0.3397	HOMO \rightarrow LUMO (94.4%)
2	333.03	0.1297	HOMO \rightarrow LUMO+1 (82.4%)
			HOMO \rightarrow LUMO+2 (9.3%)
3	320.71	0.0670	HOMO-1 \rightarrow LUMO+1 (6.0%)
			HOMO \rightarrow LUMO+1 (11.9%)
			HOMO \rightarrow LUMO+2 (68.9%)
4	301.89	0.0047	HOMO-1 \rightarrow LUMO (24.1%)
			HOMO-1 \rightarrow LUMO+1 (8.1%)
			HOMO \rightarrow LUMO+3 (19.8%)
			HOMO \rightarrow LUMO+4 (32.8%)
5	297.44	0.0508	HOMO \rightarrow LUMO+3 (28.4%)
			HOMO \rightarrow LUMO+4 (46.5%)
			HOMO \rightarrow LUMO+5 (17.3%)
			S ₁
1	557.20	0.3067	HOMO \rightarrow LUMO (99.7%)
2	436.21	0.0024	HOMO-1 \rightarrow LUMO (99.7%)
3	414.34	0.0826	HOMO-2 \rightarrow LUMO (94.1%)
4	408.22	0.0005	HOMO-4 \rightarrow LUMO (21.0%)
			HOMO-3 \rightarrow LUMO (68.7%)
5	401.93	0.0082	HOMO-4 \rightarrow LUMO (74.9%)
			HOMO-3 \rightarrow LUMO (20.1%)

0	(0)	0		0		
	E (eV)	carborane -phenyl	o-carborane	bridged -phenyl	phenanthro -imidazole	N-phenyl
			\mathbf{S}_{0}			
LUMO+3	-0.86	32.9	12.6	29.5	21.4	3.5
LUMO+2	-0.99	2.7	1.1	2.0	85.1	9.1
LUMO+1	-1.31	18.9	18.3	30.0	32.1	0.7
LUMO	-1.50	11.7	26.5	44.4	15.9	1.6
НОМО	-5.52	0.0	0.2	9.8	89.7	0.3
HOMO-1	-6.10	0.0	0.0	0.2	99.2	0.6
HOMO-2	-6.76	0.1	0.3	5.3	90.4	3.9
НОМО-3	-7.04	3.8	0.5	21.5	25.0	49.2
			\mathbf{S}_1			
LUMO+3	-0.83	6.6	1.9	15.8	69.0	6.6
LUMO+2	-0.95	0.3	0.2	1.2	87.2	11.1
LUMO+1	-1.47	0.6	1.9	43.4	52.8	1.2
LUMO	-3.54	10.8	80.0	9.2	0.0	0.0
HOMO	-5.32	0.0	0.3	12.3	87.1	0.2
HOMO-1	-6.14	0.0	0.0	0.3	99.2	0.5
HOMO-2	-6.73	0.7	0.8	8.3	88.5	1.7
HOMO-3	-7.02	37.5	11.6	31.2	15.6	4.1

Table S6 Molecular orbital energies (in eV) and molecular orbital distributions (in %) of mPC at the ground state (S₀) and first singlet excited state (S₁) optimized geometries in THF

Fig. S22 The selected frontier orbitals of *p*PC from B3LYP calculations (Isovalue = 0.04 a.u.) at the ground state (S₀) and first singlet excited state (S₁) optimized geometries in THF.

Table S7 Computed absorption wavelengths (λ_{calc} in nm) and oscillator strengths ($f_{calc.}$) for *p***PC** from TD-B3LYP calculations using the B3LYP geometries at the ground state (S₀) and first singlet excited state (S₁) optimized geometries in THF

state	$\lambda_{\rm calc}$ /nm	f_{calc}	Major contribution
			S ₀
1	370.40	0.4775	HOMO \rightarrow LUMO (98.2%)
2	325.44	0.0012	HOMO-1 \rightarrow LUMO (25.5%)
			HOMO \rightarrow LUMO+1 (10.1%)
			HOMO \rightarrow LUMO+2 (53.4%)
3	314.08	0.0483	HOMO-1 \rightarrow LUMO (51.8%)
			HOMO \rightarrow LUMO+1 (27.9%)
			HOMO \rightarrow LUMO+3 (9.1%)
4	305.96	0.0467	HOMO-1 \rightarrow LUMO (12.2%)
			HOMO \rightarrow LUMO+1 (50.2%)
			HOMO \rightarrow LUMO+2 (30.0%)
5	296.90	0.0542	HOMO \rightarrow LUMO+2 (23.6%)
			HOMO \rightarrow LUMO+3 (55.6%)
			HOMO \rightarrow LUMO+4 (9.2%)
			S ₁
1	543.71	0.4560	HOMO \rightarrow LUMO (99.8%)
2	415.64	0.0079	HOMO-1 \rightarrow LUMO (99.6%)
3	394.29	0.1098	HOMO-3 \rightarrow LUMO (7.7%)
			HOMO-2 \rightarrow LUMO (89.3%)
4	388.00	0.0492	HOMO-3 \rightarrow LUMO (82.8%)
			HOMO-2 \rightarrow LUMO (7.2%)
5	384.91	0.0032	HOMO-5 \rightarrow LUMO (37.1%)
			HOMO-4 \rightarrow LUMO (61.0%)

<u> </u>	E (eV)	carborane -phenyl	o-carborane	bridged -phenyl	phenanthro -imidazole	N-phenyl
			S_0			
LUMO+3	-0.82	8.3	3.2	9.4	70.9	8.1
LUMO+2	-0.99	3.9	1.4	1.9	84.4	8.4
LUMO+1	-1.12	46.1	22.2	5.0	26.3	0.6
LUMO	-1.74	5.9	23.4	45.0	24.9	0.8
НОМО	-5.52	0.0	0.9	10.1	88.7	0.3
HOMO-1	-6.11	0.0	0.0	0.2	99.2	0.6
НОМО-2	-6.76	0.1	0.6	6.0	89.9	3.5
НОМО-3	-7.05	2.6	2.5	22.0	25.0	47.9
			S_1			
LUMO+3	-0.86	4.9	1.6	13.6	73.6	6.3
LUMO+2	-0.99	0.1	0.0	0.5	90.2	9.3
LUMO+1	-1.39	5.3	5.1	34.1	53.8	1.6
LUMO	-3.42	8.0	83.1	7.2	1.6	0.1
HOMO	-5.41	0.5	2.6	10.4	86.2	0.3
HOMO-1	-6.17	0.0	0.0	0.3	99.1	0.5
HOMO-2	-6.75	2.2	1.9	10.1	83.9	1.9
НОМО-3	-6.99	25.7	8.3	21.9	27.8	16.4

Table S8 Molecular orbital energies (in eV) and molecular orbital distributions (in %) of pPC at the ground state (S₀) and first singlet excited state (S₁) optimized geometries in THF

Fig. S23 The selected frontier orbitals of **PC** from B3LYP calculations (Isovalue = 0.04 a.u.) at the ground state (S₀) and first singlet excited state (S₁) optimized geometries in THF.

Table S9 Computed absorption wavelengths (λ_{calc} in nm) and oscillator strengths ($f_{calc.}$) for PC from TD-B3LYP calculations using the B3LYP geometries at the ground state (S₀) and first singlet excited state (S₁) optimized geometries in THF

state	$\lambda_{\rm calc}$ /nm	f_{calc}	Major contribution
			S_0
1	332.69	0.2617	HOMO \rightarrow LUMO (93.8%)
2	312.47	0.0167	HOMO-1 \rightarrow LUMO (32.7%)
			HOMO \rightarrow LUMO+1 (43.5%)
			HOMO \rightarrow LUMO+2 (10.7%)
3	298.62	0.0213	HOMO-1 \rightarrow LUMO (38.8%)
			HOMO \rightarrow LUMO+1 (39.5%)
			HOMO \rightarrow LUMO+2 (11.2%)
4	287.92	0.0743	HOMO-1 \rightarrow LUMO (22.5%)
			HOMO-1 \rightarrow LUMO+1 (14.1%)
			HOMO \rightarrow LUMO+2 (58.3%)
5	280.88	0.0029	HOMO \rightarrow LUMO+3 (95.3%)
			S_1
1	539.77	0.4130	HOMO \rightarrow LUMO (99.9%)
2	416.15	0.0216	HOMO-1 \rightarrow LUMO (99.2%)
3	400.28	0.0416	HOMO-2 \rightarrow LUMO (94.0%)
4	386.67	0.0063	HOMO-4 \rightarrow LUMO (30.6%)
			HOMO-3 \rightarrow LUMO (62.4%)
5	376.47	0.0062	HOMO-4 \rightarrow LUMO (90.0%)

	E (eV)	carborane -phenyl	o-carborane	phenanthro -imidazole	N-phenyl
		S	\mathbf{S}_0		
LUMO+3	-0.78	6.0	3.8	6.1	84.0
LUMO+2	-0.99	17.1	6.8	72.6	3.4
LUMO+1	-1.08	15.5	6.3	75.2	3.0
LUMO	-1.56	17.4	38.0	43.7	0.9
НОМО	-5.80	0.2	3.5	96.2	0.2
HOMO-1	-6.19	0.0	0.1	99.5	0.4
HOMO-2	-6.91	1.0	0.8	93.9	4.3
HOMO-3	-7.16	67.9	3.8	3.8	24.4
		ç	S_1		
LUMO+3	-0.74	8.8	1.7	6.6	82.9
LUMO+2	-1.07	0.1	0.1	96.3	3.5
LUMO+1	-1.15	3.0	2.3	92.9	1.8
LUMO	-3.45	8.3	83.8	7.7	0.2
HOMO	-5.69	1.1	4.5	94.1	0.2
HOMO-1	-6.27	0.1	0.3	99.2	0.5
HOMO-2	-6.89	1.4	1.5	92.0	5.2
HOMO-3	-7.16	32.2	10.5	11.2	46.1

Table S10 Molecular orbital energies (in eV) and molecular orbital distributions (in %) of PC at the ground state (S_0) and first singlet excited state (S_1) optimized geometries in THF

Fig. S24 PL spectra of (a) oPC (3.0 × 10⁻⁵ M, λ_{ex} = 338 nm) and (b) mPC (λ_{ex} = 342 nm) in various organic solvents.

Fig. S25 PL spectra of *o*PC (λ_{ex} = 338 nm) in THF/distilled water mixtures (3.0 × 10⁻⁵ M).

Fig. S26 Emission decay curves for (a) *o***PC**, (b) *m***PC**, (c) *p***PC**, and (d) **PC** in the film state (5 wt% doped in PMMA) detected at each CT based emission maxima at 298 K. Each red-line is its exponential fitting curve for the decay curves.

		<i>p</i> PC					РС		
Ψ /°	НОМО	LUMO	$\lambda_{ m calc}$	$f_{\text{calc.}}$	Ψ/°	НОМО	LUMO	$\lambda_{ m calc}$	$f_{\text{calc.}}$
0	72	81.5	896.06	0.0010	0	91.1	72.1	992.75	0.0010
30	74.2	83	836.71	0.1279	30	92.6	82.3	914.68	0.0575
60	80.3	85.9	673.12	0.3462	60	94.4	83.7	664.09	0.3735
90	83.6	86.1	543.91	0.4599	90	94.7	85	543.88	0.4186
120	80.3	85.3	653.71	0.3811	120	94	83.6	653.85	0.0255
150	74.4	82.7	875.71	0.1351	150	91.9	81.8	906.35	0.0022
180	72.1	81.1	900.62	0.0000	180	91.1	72.2	1090.89	0.0000
210	74.4	83.2	868.14	0.1254	210	91.7	81.5	910.39	0.0031
240	80.1	85.4	620.28	0.3615	240	93.8	83.5	659.14	0.0336
270	83.7	86.6	545.89	0.4385	270	94.8	85.5	525.29	0.4153
300	80.3	85.1	687.60	0.3773	300	94.7	84.5	655.62	0.3554
330	74.7	82.4	819.13	0.1389	330	92.5	82.8	908.83	0.0548
360	72	81.5	896.06	0.0010	360	91.5	72.1	992.75	0.0010

Table S11 Low-energy electronic transitions (LUMO \rightarrow HOMO transitions) data (computed absorption wavelengths (λ_{calc} in nm) and oscillator strengths ($f_{calc.}$)) of S₁-states as Ψ was varied from 0–360°, and molecular orbital distributions on the *o*-carborane moieties of the LUMO levels (%) and the 1*H*-phenanthro[9,10-*d*]imidazole moiety of the HOMO levels (%) for *p*PC and PC

Atom	Х	Y	Ζ	- C	-4.719583	-1.150819	0.082120	Н	6.808607	-1.708834	-3.2
С	3.531624	-0.780142	0.971232	- C	-6.069174	-1.123533	0.500715	С	6.566778	-0.720477	-1.3
С	2.195008	0.379879	0.859643	Н	-6.651563	-2.036909	0.493151	Н	7.562822	-0.289124	-1.3
С	1.981318	1.096428	-0.467702	C	-6.682580	0.039918	0.932313	С	5.713323	-0.473936	-0.2
С	0.768393	1.076589	-1.210665	Н	-7.721414	0.017428	1.247026	Н	6.060618	0.141229	0.5
С	0.695175	1.791680	-2.417790	C	-5.958477	1.240825	0.968519	Ν	-1.631658	1.006484	-0.
Н	-0.233521	1.757158	-2.976952	Н	-6.430343	2.155136	1.315277	Ν	-0.686444	-0.939839	-1.
С	1.767938	2.520545	-2.918440	С	-4.635791	1.260459	0.563826	В	0.938937	-0.154179	1.8
Н	1.674192	3.055113	-3.858083	Н	-4.085409	2.190565	0.602789	Н	-0.176047	0.057946	1.5
С	2.955204	2.543697	-2.195857	С	-3.992152	0.086338	0.109305	В	1.900547	-1.325973	0.9
Н	3.814366	3.100620	-2.555281	С	-1.761226	2.426929	-0.259764	Н	1.482685	-1.859090	-0.
С	3.048447	1.844116	-0.996640	С	-2.351238	3.197002	-1.267131	В	1.480608	-1.665806	2.
Н	3.986434	1.883208	-0.465144	Н	-2.711924	2.714213	-2.169548	Н	0.704039	-2.525165	2.
С	-0.482372	0.347149	-0.865431	С	-2.478530	4.575016	-1.094893	В	1.571302	-0.127040	3.
С	-2.620759	0.030015	-0.325243	Н	-2.938500	5.173347	-1.874976	Н	0.848676	0.114058	4.
С	-2.002806	-1.153754	-0.709582	С	-2.012967	5.181744	0.074478	В	2.023193	1.151981	2.
С	-2.708603	-2.403121	-0.742110	Н	-2.111243	6.254859	0.205293	Н	1.681259	2.284446	2.
С	-2.080655	-3.597824	-1.150068	С	-1.422311	4.407394	1.074707	В	3.105565	-2.044740	2.
Н	-1.035613	-3.558641	-1.438718	Н	-1.061505	4.874608	1.985511	Н	3.519753	-3.121276	1.
С	-2.785879	-4.786768	-1.182456	C	-1.296919	3.026317	0.912806	В	2.905047	-1.291315	3.
Н	-2.297558	-5.703931	-1.498004	Н	-0.852216	2.415480	1.689835	Н	3.169183	-1.894181	4.
С	-4.140075	-4.801416	-0.804843	С	4.420316	-1.021779	-0.222957	В	3.252395	0.451095	3.
Н	-4.700499	-5.731193	-0.828523	C	4.008053	-1.828273	-1.294261	Н	3.763990	1.109270	4.
С	-4.767962	-3.634895	-0.400442	Н	3.020856	-2.271652	-1.295592	В	3.633793	0.752278	1.
Н	-5.812514	-3.687394	-0.117153	С	4.863448	-2.070063	-2.368647	Н	4.390735	1.560804	1.
С	-4.079088	-2.399907	-0.353293	Н	4.524275	-2.695516	-3.188342	В	4.192057	-0.740742	2.
				С	6.144193	-1.517447	-2.389761	Н	5.356442	-0.918201	2.

Table S12 Cartesian coordinates of the ground state (S₀) fully optimized geometry of *o*PC in THF from B3LYP calculations (in Å)

				(-)	• 1	•	•				· ·
Atom	Х	Y	Z	С	-4.549636	-1.567056	0.175830	Н	7.267956	-2.140930	-2.856946
С	3.813478	-0.683406	1.021368	С	-5.854429	-1.705013	0.664363	C	6.846812	-0.745119	-1.262823
С	1.967378	0.862356	0.724589	Н	-6.322443	-2.680067	0.699997	Н	7.763190	-0.178835	-1.404382
С	1.667081	1.547028	-0.563020	С	-6.586940	-0.609908	1.122332	C	5.952959	-0.365380	-0.263436
С	0.523077	1.304741	-1.375138	Н	-7.594385	-0.763936	1.493773	Н	6.182010	0.489419	0.363916
С	0.367107	1.946878	-2.613662	С	-6.032091	0.673907	1.110529	Ν	-1.818430	0.936828	-0.519789
Н	-0.510889	1.725545	-3.213248	Н	-6.600665	1.522159	1.474285	Ν	-0.659123	-0.891455	-1.186410
С	1.306920	2.858617	-3.082964	С	-4.747006	0.855534	0.631474	В	0.905524	0.206684	1.771231
Н	1.169524	3.340454	-4.045175	Н	-4.315083	1.845851	0.625221	Н	-0.253694	0.282403	1.540818
С	2.410641	3.145270	-2.282231	С	-3.988254	-0.243179	0.155087	В	2.116620	-0.872479	0.841222
Н	3.152635	3.867847	-2.608714	С	-2.094260	2.340721	-0.317512	Н	1.725330	-1.504067	-0.079782
С	2.578262	2.502284	-1.060035	С	-2.777114	3.042852	-1.313845	В	1.533781	-1.244283	2.546708
Н	3.450490	2.737305	-0.465786	Н	-3.093514	2.532052	-2.217217	Н	0.755761	-2.099617	2.835893
С	-0.601869	0.414727	-1.008334	С	-3.047837	4.397806	-1.125364	В	1.568080	0.334630	3.409769
С	-2.659403	-0.125062	-0.343819	Н	-3.578807	4.950251	-1.893611	Н	0.849698	0.602808	4.322938
С	-1.897168	-1.265640	-0.778026	С	-2.632597	5.039231	0.044173	В	1.978443	1.576780	2.200091
С	-2.438257	-2.575326	-0.760274	Н	-2.842573	6.094481	0.186389	Н	1.666651	2.723772	2.245846
С	-1.673778	-3.681941	-1.197306	С	-1.945644	4.326716	1.028954	В	3.177661	-1.710393	2.122301
Н	-0.661411	-3.505766	-1.541565	Н	-1.620044	4.823980	1.936587	Н	3.499756	-2.852780	2.052351
С	-2.219864	-4.953494	-1.178476	С	-1.671887	2.969148	0.854425	В	2.902586	-0.788875	3.618219
Н	-1.638974	-5.806116	-1.511312	Н	-1.142254	2.404994	1.612916	Н	3.111047	-1.289639	4.679808
С	-3.532504	-5.125817	-0.722050	С	4.756856	-1.077311	-0.048529	В	3.247983	0.933229	3.243555
Н	-3.971815	-6.117484	-0.701955	С	4.495543	-2.185842	-0.876898	Н	3.744353	1.671247	4.036675
С	-4.295040	-4.038288	-0.285800	Η	3.583287	-2.753940	-0.730490	В	3.556953	0.967972	1.438067
Н	-5.303009	-4.231095	0.058290	С	5.390628	-2.564664	-1.875764	Н	4.325409	1.761783	1.008987
С	-3.775697	-2.737921	-0.289390	Н	5.164317	-3.425699	-2.498576	В	4.254022	-0.345092	2.555433
				С	6.571559	-1.846234	-2.077600	Н	5.410596	-0.422126	2.819529

Table S13 Cartesian coordinates of the first excited state (S₁) fully optimized geometry of *o*PC in THF from B3LYP calculations (in Å)

Atom	Х	Y	Z	с	5.538217	-0.472080	-0.547793	Н	-2.511668	5.052294	-2.790949
С	-4.439027	0.463318	-0.683124	С	6.608367	-1.232884	-1.069803	C	-2.466472	2.897128	-2.853267
С	-3.666550	-0.284855	0.715083	Н	7.578063	-0.769894	-1.206295	Н	-1.752209	2.850652	-3.669204
С	-2.469881	0.380990	1.347346	С	6.466908	-2.566938	-1.410840	C	-2.955512	1.713710	-2.302690
С	-1.175362	0.131335	0.870884	Н	7.315396	-3.115874	-1.807561	Н	-2.622076	0.766115	-2.707151
Н	-1.038225	-0.522670	0.022946	С	5.230497	-3.204835	-1.234759	Ν	1.860541	-0.607924	0.429107
С	-0.056261	0.728204	1.469812	Н	5.113157	-4.253497	-1.490427	Ν	2.222100	1.518103	1.057161
С	-0.250676	1.594439	2.559544	С	4.154680	-2.496961	-0.729465	В	-4.855978	-1.053348	1.666670
Н	0.612213	2.066814	3.014339	Н	3.210636	-3.004927	-0.592518	Н	-4.688545	-1.050583	2.837260
С	-1.530611	1.832136	3.046862	С	4.271645	-1.130090	-0.384531	В	-5.200427	0.493224	0.862553
Н	-1.671894	2.488081	3.899729	С	1.183877	-1.865381	0.266089	Н	-5.266469	1.510263	1.448439
С	-2.637206	1.227661	2.452656	С	0.736516	-2.251614	-1.001513	В	-6.405866	-0.797116	0.839855
Н	-3.624627	1.413294	2.855872	Н	0.904837	-1.598091	-1.851382	Н	-7.412031	-0.682084	1.457590
С	1.325036	0.549855	0.984191	С	0.088733	-3.477452	-1.156573	В	-5.535539	-2.345423	0.654116
С	3.199895	-0.328540	0.148668	Н	-0.256491	-3.782158	-2.139312	Н	-5.921947	-3.354780	1.144675
С	3.378414	0.993756	0.540459	С	-0.115907	-4.307605	-0.050976	В	-3.796248	-1.982664	0.590072
С	4.634595	1.671313	0.386345	Н	-0.621183	-5.260187	-0.174500	Н	-2.894613	-2.617778	1.015564
С	4.798302	3.019132	0.766182	С	0.328861	-3.911929	1.212318	В	-6.119689	0.168221	-0.621549
Н	3.947116	3.542319	1.188878	Н	0.171789	-4.555110	2.072252	Н	-6.825367	1.019898	-1.040046
С	6.015399	3.653400	0.597456	С	0.983071	-2.689520	1.375320	В	-6.311967	-1.594135	-0.755104
Н	6.136405	4.692030	0.890321	Н	1.341065	-2.374236	2.349693	Н	-7.263075	-2.056891	-1.293528
С	7.095466	2.945738	0.041304	С	-3.879579	1.744396	-1.246332	В	-4.682140	-2.306130	-0.913531
Н	8.053454	3.437871	-0.097145	С	-4.314462	2.990843	-0.769760	Н	-4.451201	-3.274213	-1.559144
С	6.947615	1.620383	-0.333451	Н	-5.045436	3.045499	0.027033	В	-3.513428	-0.983834	-0.851429
Н	7.803577	1.110599	-0.759400	С	-3.822986	4.172648	-1.322169	Н	-2.477272	-0.937160	-1.404197
С	5.718846	0.937445	-0.172780	Н	-4.171988	5.125935	-0.938023	В	-5.058612	-0.759220	-1.698808
				С	-2.894009	4.131189	-2.362261	Н	-5.033029	-0.550682	-2.862501

Table S14 Cartesian coordinates of the ground state (S₀) fully optimized geometry of mPC in THF from B3LYP calculations (in Å)

				· · · · · · · · · · · · · · · · · · ·	-/ / 1	•	•			· ·	,
Atom	Х	Y	Z	C	5.616943	-0.386979	-0.691204	Н	-3.683368	4.776938	-3.6868
C	-4.750571	0.400442	-0.726579	C	6.640591	-1.110150	-1.317171	С	-3.362014	2.654253	-3.4436
С	-3.451185	-0.346073	1.148863	Н	7.619849	-0.667287	-1.442813	Н	-2.731304	2.564921	-4.3238
С	-2.248540	0.343812	1.676862	С	6.444826	-2.406690	-1.788292	С	-3.633754	1.523359	-2.6766
С	-0.977531	0.088542	1.144630	Н	7.267174	-2.928622	-2.265874	Н	-3.215443	0.565224	-2.9659
Н	-0.894251	-0.612191	0.327801	С	5.202735	-3.034597	-1.644218	Ν	1.996445	-0.541649	0.3858
С	0.164848	0.756199	1.627833	Н	5.052555	-4.045780	-2.005181	Ν	2.446138	1.514871	1.2169
С	0.031521	1.703527	2.666528	С	4.162466	-2.356748	-1.036372	В	-4.616041	-0.980231	2.1032
Н	0.909128	2.222946	3.029815	Н	3.206951	-2.846519	-0.926282	Н	-4.470147	-0.876511	3.2792
С	-1.221006	1.943192	3.212552	С	4.335950	-1.032816	-0.554310	В	-4.952612	0.480270	0.9942
Н	-1.328410	2.657012	4.023119	С	1.290660	-1.771277	0.108813	Н	-5.038478	1.557079	1.488
С	-2.346678	1.274729	2.727522	С	0.750505	-1.977445	-1.162920	В	-6.203892	-0.815942	1.3551
Н	-3.317972	1.479326	3.163888	Н	0.845941	-1.209871	-1.923649	Н	-7.151995	-0.678951	2.0639
С	1.504689	0.576664	1.081001	С	0.094907	-3.178894	-1.431797	В	-5.308127	-2.372432	1.2466
С	3.311487	-0.277223	0.086399	Н	-0.330843	-3.348838	-2.414867	Н	-5.617544	-3.355885	1.8452
С	3.548416	1.034681	0.616941	С	-0.016769	-4.155058	-0.438053	В	-3.595621	-1.968843	1.0127
С	4.809739	1.685040	0.483709	Н	-0.530614	-5.086552	-0.651251	Н	-2.664127	-2.627178	1.347
С	5.012756	2.985348	0.991155	С	0.524966	-3.933056	0.829776	В	-6.238343	-0.052089	-0.2351
Н	4.188318	3.480968	1.490975	Н	0.435355	-4.689423	1.602242	Н	-7.149490	0.636492	-0.5659
С	6.242167	3.605411	0.842061	С	1.185104	-2.735978	1.111007	В	-6.258719	-1.827936	-0.1288
Н	6.402766	4.605638	1.228870	Н	1.615488	-2.551279	2.089305	Н	-7.221513	-2.436519	-0.4810
С	7.275087	2.927000	0.183055	С	-4.452085	1.599805	-1.531471	В	-4.571645	-2.390400	-0.394
Н	8.241739	3.403424	0.057687	С	-4.984258	2.859198	-1.189023	Н	-4.327658	-3.404811	-0.9702
С	7.082936	1.639827	-0.319326	Н	-5.620603	2.945808	-0.314911	В	-3.571004	-0.851387	-0.4829
Н	7.914237	1.161011	-0.820570	С	-4.710925	3.988707	-1.957375	Н	-2.590199	-0.815320	-1.1524
С	5.851093	0.980912	-0.183407	Н	-5.137602	4.946093	-1.671412	В	-5.212529	-1.040385	-1.3327
				С	-3.896332	3.895814	-3.089109	Н	-5.329820	-1.117893	-2.5136

Table S15 Cartesian coordinates of the first excited state (S1) fully optimized geometry of mPC in THF from B3LYP calculations (in Å)

Atom	Х	Y	Z	C	6.124615	0.353043	-0.025272	Н	-3.389481	4.072279	3.7698
C	-5.315607	0.514145	0.185902	C	7.459216	-0.071802	0.160678	С	-3.997824	3.743299	1.7273
С	-4.219103	-0.463734	-0.796537	Н	8.268095	0.640254	0.051167	Н	-3.800136	4.763621	1.4143
С	-2.731562	-0.300207	-0.636637	C	7.778891	-1.381543	0.474663	С	-4.485313	2.824808	0.7988
С	-2.015610	0.613708	-1.426743	Н	8.817901	-1.666730	0.607931	Н	-4.668419	3.149567	-0.2176
Н	-2.531087	1.232176	-2.150675	С	6.759779	-2.335022	0.611940	Ν	2.498467	-0.803705	0.017
С	-0.636787	0.728735	-1.310624	Н	7.002103	-3.366474	0.848990	Ν	2.091355	1.319604	-0.5922
Н	-0.099379	1.439816	-1.926738	С	5.438541	-1.961874	0.441818	В	-4.925468	-1.992560	-1.071
С	0.086460	-0.068778	-0.405548	Н	4.664982	-2.709627	0.544472	Н	-4.189803	-2.916610	-1.1310
С	-0.629387	-0.983619	0.383095	C	5.086566	-0.627501	0.131456	В	-4.928262	-0.736352	-2.324
Н	-0.120250	-1.604897	1.107751	C	2.255420	-2.191534	0.302190	Н	-4.194703	-0.791411	-3.250
С	-2.011522	-1.097434	0.264292	C	2.272021	-2.639859	1.626818	В	-6.397819	-1.688336	-2.019
Н	-2.525630	-1.820449	0.884866	Н	2.473605	-1.936567	2.428233	Н	-6.776337	-2.483175	-2.815
С	1.540673	0.147482	-0.322147	C	2.031692	-3.987006	1.897733	В	-6.503074	-1.970305	-0.258
С	3.736231	-0.163973	-0.061132	Н	2.045042	-4.339052	2.924291	Н	-6.953515	-2.957429	0.220
С	3.439740	1.144580	-0.429379	C	1.771616	-4.877511	0.852395	В	-5.118122	-1.172030	0.4924
С	4.461053	2.140416	-0.592744	Н	1.582749	-5.924690	1.066695	Н	-4.550594	-1.512415	1.4642
С	4.147666	3.468203	-0.947855	C	1.754513	-4.421100	-0.467084	В	-5.123233	0.825231	-1.4994
Н	3.105813	3.727991	-1.102984	Н	1.553433	-5.110748	-1.280610	Н	-4.559441	1.798365	-1.841
С	5.148564	4.411792	-1.089824	C	1.999008	-3.075702	-0.747662	В	-6.508112	0.072201	-2.2964
Η	4.902504	5.433713	-1.362352	Н	1.993484	-2.708977	-1.768671	Н	-6.961714	0.552955	-3.2814
С	6.487627	4.040399	-0.876721	C	-4.748471	1.498563	1.175824	В	-7.499672	-0.706254	-1.031
Н	7.278847	4.776308	-0.983897	C	-4.529175	1.122972	2.510551	Н	-8.681390	-0.785736	-1.1084
С	6.808127	2.738085	-0.529979	Н	-4.747164	0.113251	2.835425	В	-6.715933	-0.396089	0.5329
Н	7.851736	2.492044	-0.374064	C	-4.042109	2.043956	3.436573	Н	-7.223203	-0.214158	1.585
С	5.811697	1.745101	-0.378557	Н	-3.879640	1.732459	4.463566	В	-6.719224	0.860207	-0.7199
				С	-3.769688	3.356091	3.048131	Н	-7.227915	1.911406	-0.5337

Table S16 Cartesian coordinates of the ground state (S_0) fully optimized geometry of *p*PC in THF from B3LYP calculations (in Å)

				``	-/ • 1	•	• 1				/
Atom	Х	Y	Z	C	6.240665	0.506914	0.050622	Н	-4.649806	4.243904	3.951845
С	-5.678444	0.509008	0.212553	C	7.573254	0.139468	0.286232	C	-4.990408	3.853697	1.854397
С	-4.002859	-0.677574	-0.985777	Н	8.366233	0.865061	0.158973	Н	-4.894145	4.894974	1.560133
С	-2.540904	-0.485592	-0.804124	С	7.924039	-1.149753	0.678879	C	-5.250647	2.888569	0.885159
С	-1.826992	0.443321	-1.585490	Н	8.968428	-1.389048	0.849333	Н	-5.356593	3.185014	-0.152647
Н	-2.351757	1.032974	-2.328119	С	6.940112	-2.131677	0.847578	Ν	2.678047	-0.771967	0.062382
С	-0.461214	0.621073	-1.419795	Н	7.213417	-3.137663	1.146336	Ν	2.213174	1.316811	-0.669096
Н	0.069992	1.346871	-2.024468	С	5.612893	-1.812990	0.630284	В	-4.706145	-2.141342	-1.178641
С	0.257933	-0.139731	-0.474745	Н	4.858626	-2.574953	0.759564	Н	-3.994629	-3.093333	-1.155363
С	-0.449224	-1.070437	0.309469	С	5.229686	-0.503398	0.236862	В	-4.712266	-0.872941	-2.446503
Н	0.055628	-1.652542	1.068487	С	2.469109	-2.152157	0.425065	Н	-4.005831	-0.847465	-3.402054
С	-1.819513	-1.233623	0.144821	С	2.442880	-2.509849	1.775889	В	-6.138287	-1.906803	-2.206401
Н	-2.341554	-1.951114	0.766852	Н	2.577856	-1.750435	2.539019	Н	-6.433403	-2.722992	-3.022448
С	1.689702	0.135332	-0.353352	C	2.240922	-3.846464	2.119792	В	-6.306685	-2.163167	-0.435977
С	3.883804	-0.107134	-0.010395	Н	2.218495	-4.133531	3.165869	Н	-6.708437	-3.185234	0.024703
С	3.545776	1.203516	-0.465784	C	2.063483	-4.808616	1.121742	В	-5.018826	-1.104533	0.327989
С	4.531953	2.212062	-0.651460	Н	1.903278	-5.846854	1.393844	Н	-4.507151	-1.413531	1.353033
С	4.174344	3.509157	-1.082253	C	2.089422	-4.437453	-0.224099	В	-5.025664	0.631052	-1.405123
Н	3.128297	3.719558	-1.274290	Н	1.950237	-5.183551	-0.999353	Н	-4.518578	1.658421	-1.714051
С	5.146246	4.480889	-1.247164	C	2.294624	-3.103747	-0.580542	В	-6.315572	-0.136712	-2.459424
Н	4.875196	5.478016	-1.576527	Н	2.319340	-2.801382	-1.621887	Н	-6.724196	0.324012	-3.478687
С	6.485007	4.162791	-0.981557	С	-5.386340	1.528004	1.232541	В	-7.377434	-1.028394	-1.321553
Н	7.255488	4.916752	-1.105043	C	-5.247807	1.178526	2.592335	Н	-8.535014	-1.230348	-1.518905
С	6.848101	2.884062	-0.558130	Н	-5.351816	0.140029	2.887139	В	-6.810929	-0.654219	0.328475
Н	7.896043	2.691171	-0.366504	C	-4.987770	2.146520	3.558696	Н	-7.475847	-0.661024	1.313416
С	5.889957	1.872858	-0.382645	Н	-4.889731	1.850753	4.599405	В	-6.815317	0.623449	-0.946775
				С	-4.854641	3.490380	3.197385	Н	-7.483879	1.605912	-0.948875

Table S17 Cartesian coordinates of the first excited state (S₁) fully optimized geometry of *p*PC in THF from B3LYP calculations (in Å)

Atom	Х	Y	Z	C	-3.016765	2.434751	-0.056752	Н	1.491763	-2.806968	1.600491
С	2.978621	-0.842119	0.357535	. Н	-2.134753	3.054413	-0.122558	N	-0.338799	0.753691	-0.508881
С	1.891206	-0.486625	-0.992708	С	-2.901976	1.031158	-0.184984	N	-0.328163	-1.475995	-0.772884
С	0.421961	-0.391524	-0.737149	С	0.101814	2.116536	-0.354282	В	4.199652	-1.910621	-0.170126
С	-1.661128	0.323888	-0.398652	С	0.303776	2.624856	0.931922	Н	4.594646	-2.695188	0.621959
С	-1.610533	-1.056032	-0.561679	Н	0.161827	1.980227	1.792504	В	2.532731	-2.085008	-0.756011
С	-2.783194	-1.883307	-0.502994	С	0.692722	3.954649	1.087933	Н	1.809478	-2.941331	-0.414084
С	-2.711905	-3.281127	-0.665112	Н	0.853244	4.354208	2.084131	В	3.881969	-2.230117	-1.885347
Н	-1.742237	-3.732798	-0.845590	C	0.874981	4.768564	-0.033634	Н	4.139471	-3.283685	-2.365904
С	-3.856968	-4.053604	-0.593876	Н	1.179095	5.803030	0.090992	В	5.115943	-1.028057	-1.414045
Н	-3.798762	-5.130545	-0.719027	C	0.660924	4.254321	-1.313983	Н	6.279603	-1.216070	-1.552806
С	-5.096942	-3.435622	-0.357743	Н	0.794296	4.886399	-2.185919	В	4.507581	-0.176077	0.018924
Н	-5.999975	-4.035635	-0.299018	C	0.266478	2.925326	-1.479399	Н	5.129604	0.243174	0.932554
С	-5.178500	-2.061722	-0.199436	Н	0.078967	2.519227	-2.466982	В	2.421844	-1.346600	-2.373510
Н	-6.153286	-1.624744	-0.019685	C	2.421961	-0.862760	1.757753	Н	1.587725	-1.740697	-3.110937
С	-4.029344	-1.239636	-0.267940	C	2.669411	0.216994	2.621768	В	4.022882	-0.687270	-2.768781
С	-4.086942	0.222199	-0.114459	Н	3.242680	1.068659	2.276066	Н	4.387024	-0.628388	-3.896893
С	-5.317861	0.882014	0.098038	C	2.193007	0.202336	3.931452	В	4.385192	0.593661	-1.577393
Н	-6.231912	0.304363	0.158195	Н	2.399589	1.044541	4.584327	Н	5.012244	1.568248	-1.830676
С	-5.404152	2.257217	0.229361	C	1.458946	-0.888484	4.400336	В	3.024173	0.687184	-0.454574
Н	-6.370705	2.724397	0.390758	Н	1.086743	-0.898982	5.420050	Н	2.647301	1.635543	0.121175
С	-4.244359	3.039723	0.147282	C	1.211565	-1.967031	3.551069	В	2.734953	0.390363	-2.189966
Н	-4.303031	4.119646	0.241239	Н	0.645831	-2.823060	3.904883	Н	2.124871	1.189737	-2.807897
				С	1.690329	-1.958084	2.241193				

Table S18 Cartesian coordinates of the ground state (S₀) fully optimized geometry of PC in THF from B3LYP calculations (in Å)

						-	-				
Atom	Х	Y	Z	C	-3.173086	2.405525	-0.096805	Н	2.895454	-2.451891	2.382704
С	3.390689	-0.703353	0.364939	- Н	-2.287430	2.983703	-0.314758	Ν	-0.610016	0.608078	-0.636901
С	1.557088	-0.715358	-1.177151	С	-3.100199	0.987015	-0.082543	Ν	-0.655586	-1.647890	-0.691015
С	0.111467	-0.586498	-0.832238	С	-0.104570	1.956995	-0.658060	В	4.253260	-1.905340	-0.284012
С	-1.912781	0.241038	-0.346878	С	0.233341	2.573835	0.549150	Н	4.870288	-2.586210	0.468717
С	-1.902105	-1.175780	-0.380604	Н	0.143529	2.023676	1.479648	В	2.415081	-1.971471	-0.412285
С	-3.055051	-1.945341	-0.103480	С	0.694779	3.889313	0.535741	Н	1.812842	-2.696533	0.303425
С	-3.009225	-3.363758	-0.119656	Н	0.961389	4.374472	1.469134	В	3.524544	-2.613938	-1.728556
Н	-2.066561	-3.843416	-0.357218	С	0.817990	4.576907	-0.674722	Н	3.727037	-3.767808	-1.936189
С	-4.142538	-4.099836	0.167125	Н	1.180891	5.599803	-0.682075	В	4.801225	-1.372708	-1.908522
Н	-4.112021	-5.183852	0.157067	С	0.473302	3.951520	-1.874777	Н	5.914315	-1.612450	-2.257046
С	-5.335435	-3.427992	0.476184	Н	0.565344	4.485328	-2.814985	В	4.526825	-0.139556	-0.636584
Н	-6.231069	-3.995334	0.707351	С	0.003941	2.636960	-1.871454	Н	5.357358	0.563109	-0.159629
С	-5.393392	-2.032221	0.492776	Н	-0.276842	2.142768	-2.794642	В	1.980763	-1.920582	-2.218621
Н	-6.339537	-1.567557	0.740553	С	3.229347	-0.400665	1.786701	Н	1.109124	-2.585550	-2.666948
С	-4.266460	-1.249210	0.202348	С	3.334699	0.924840	2.265483	В	3.460629	-1.390480	-3.040941
С	-4.290128	0.223191	0.196110	Н	3.530150	1.728813	1.564690	Н	3.635814	-1.646056	-4.190261
С	-5.474507	0.932115	0.448116	С	3.200501	1.206801	3.621416	В	3.948583	0.160837	-2.277810
Н	-6.392469	0.396179	0.654436	Н	3.292440	2.232436	3.966976	Н	4.467052	1.041475	-2.887075
С	-5.519218	2.324436	0.434466	С	2.951970	0.179371	4.537510	В	2.784777	0.411257	-0.880833
Н	-6.457685	2.830826	0.634883	Н	2.845316	0.402192	5.594729	Н	2.515549	1.504594	-0.531898
С	-4.363240	3.063241	0.158030	С	2.844585	-1.138007	4.079856	В	2.239254	-0.184317	-2.571421
Н	-4.395549	4.147309	0.139991	Н	2.656595	-1.944136	4.783007	H	1.582479	0.482704	-3.300188
				С	2.978353	-1.426487	2.725574				

Table S19 Cartesian coordinates of the first excited state (S₁) fully optimized geometry of PC in THF from B3LYP calculations (in Å)