Supporting Information

Anchoring stable FeS₂ nanoparticles on MXene nanosheets via interface engineering for efficient water splitting

Yaoyi Xie^a, Hanzhi Yu^a, Liming Deng^a, R. S. Amin^b, Deshuang Yu^b, Amani E. Fetohi^b, Maxim Yu. Maximov^c, Linlin Li,^a K. M. El-Khatib,^{*b} Shengjie Peng^{*a}

^aJiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China. E-mail: pengshengjie@nuaa.edu.cn

^bChemical Engineering & Pilot Plant Department, Engineering Research Institute, National Research Centre, 33 El-Buhouth St., Dokki, Cairo, 12622, Egypt

E-mail: Kamelced@hotmail.com

°Peter the Great Saint-Petersburg Polytechnic University, 195251 Saint Petersburg, Russia

Fig. S1. SEM images of (a) accordion-like $Ti_3C_2T_x$ MXene and (b) exfoliated ultrathin MXene nanosheets, respectively.

Fig. S2. TEM image of exfoliated MXene.

Fig. S3. (a) XRD patterns and (b) SEM mapping of S/MXene mixture.

Fig. S4. XRD patterns of $FeS_2@5MXene$, $FeS_2@10MXene$ and $FeS_2@20MXene$.

Fig. S5. Ti 2p spectrum of FeS₂@MXene.

Fig. S6. Fe K-edge XAFS $k^2[\chi(k)]$ oscillation curves.

Fig. S7. HER performance in 1 M KOH. (a) LSV curves, (b) Tafel plots of FeS₂, FeS₂@5MXene, FeS₂@10MXene, FeS₂@20MXene and MXene.

Fig. S8. OER performance in 1 M KOH. (a) LSV curves, (b) Tafel plots of FeS₂, FeS₂@5MXene, FeS₂@10MXene, FeS₂@20MXene and MXene.

Fig. S9. Nyquist plots of FeS₂, FeS₂@5MXene, FeS₂@10MXene, FeS₂@20MXene and MXene.

Fig. S10. Cyclic voltammograms of (a) FeS_2 , (b) MXene and (c) FeS_2 @MXene in 1.0 M KOH at various scanning rates (from 20 mV to 100 mV s⁻¹), within a potential range where no Faradaic process is observed.

Fig. S11. (a) HER and (b) OER polarization curve normalized by the loading mass for MXene, FeS_2 and $FeS_2@MXene$.

Fig. S12. (a) The ECSA of MXene, FeS_2 and $FeS_2@MXene$. (b) HER and (c) OER polarization curve normalized by the ECSA for MXene, FeS_2 and $FeS_2@MXene$.

Fig. S13. Nyquist curves of FeS_2 , $FeS_2@10MX$ ene and MX ene towards water splitting.

Fig. S14. Digital photograph of the H-type electrolyzer for Faraday efficiency test.

Fig. S15. O 1s spectrum of $FeS_2@MX$ ene before and after HER/OER test.

Catalysts	Rs (ohm)	Rct (ohm)	R1
MXene	1.01	15.11	0.50
FeS_2	1.03	6.52	1.16
FeS ₂ @10MXene	0.91	4.99	0.424

Table S1. HER Fitting results of EIS for MXene, FeS_2 and $FeS_2@MXene$.

Table S2. OER Fitting results of EIS for MXene, FeS_2 and $FeS_2@MXene$.

Catalysts	Rs (ohm)	Rct (ohm)
MXene	1.03	5.85
FeS_2	0.92	2.29
FeS ₂ @5MXene	0.99	1.94
FeS ₂ @10MXene	0.99	1.94
FeS ₂ @20MXene	0.94	2.05

Table S3. Comparison of the **HER** electrocatalytic activity of FeS₂@MXene in 1.0 M KOH with some representative catalysts based on transition-metal-sulfide-based electrocatalysts which have recently reported.

Sample	Tafel slope (mV dec ⁻¹)	Current density (mA cm ⁻ ²)	Overpotential (mV)	References
FeS ₂ @MXene	97.7	10	87	This work
FeS ₂ /C nanoparticles	98	10	202	Dalton Trans., 2018, 47, 14917-14923
FeS ₂ /CoS ₂ NSs	44	10	78.2	Small 2018, 14, 1801070
NiS ₂ /FeS ₂ /NC	115.6	10	172	J. Power Sources, 2019, 436, 226857
$Ni_{0.7}Fe_{0.3}S_2$	109	10	155	J. Mater. Chem. A, 2017, 5, 15838- 15844
Fe11.1%-Ni ₃ S ₂ /Ni foam	89	10	203	J. Mater. Chem. A, 2018, 6, 4346-4353
Ni-FeS ₂ -0.5	-	10	164	Inorg. Chem. 2019, 58, 7615-7627
FS-0.9-30	112.51	10	157	ACS Sustainable Chem. Eng. 2019, 7, 18015-18026
Mesoporous FeS_2	78	10	96	J. Am. Chem. Soc. 2017, 139, 13604- 13607
P-(Ni, Fe) ₃ S ₂ /NF	88	10	98	ACS Appl. Mater. Interfaces 2019, 11, 27667-27676

$Co_{0.25}Fe_{0.75}S_2$	58	10	267	New J. Chem., 2020, 44, 1711-1718
FeS ₂ @C	128	10	195	ACS Appl. Nano Mater. 2019, 2, 3889- 3896
Ni _{0.9} Fe _{0.1} PS ₃ @MXene	114	10	196	Adv. Energy Mater. 2018, 8, 1801127
Co-MoS ₂ /Mo ₂ CTx	82	10	112	Nanoscale, 2019, 11, 10992-11000
MoS ₂ / Ti ₃ C ₂ -MXene@C	45	10	135	Adv. Mater., 2017, 29, 1607017
NiS ₂ /V-MXene	85	10	179	J. Catal., 2019, 375, 8-20
Ni ₃ S ₄ /NiS ₂ /FeS ₂	110	10	197	Appl. Surf. Sci., 2021, 560, 149985
Co ₉ S ₈ -MoS ₂ /NF,	30.5	10	110	Adv. Funct. Mater., 2020, 30, 2002536
Mo-Ni ₃ S ₂ QDs	67	10	115	Nanoscale, 2021, 13, 6644-6653
Fe-c-Ni ₃ S ₂ /NF	105	10	115	Dalton Trans., 2021, 50, 7776-7782
FeS ₂ /PANI /EG	144	10	230	Appl. Surf. Sci. 2020,505, 144534
P-Ni ₃ S ₂ /NF	88	10	101	Catal. Sci. Technol., 2020, 10, 7581- 7590
NiFe-MS/MOF@NF	82	10	90	Adv. Sci. 2020, 7, 2001965
Fe _x Ni _{3-x} S ₂ @NF	71	10	72	Adv. Energy Mater. 2020, 10, 2001963
NiCo ₂ S ₄ /Ni ₃ S ₂	105	10	119	ACS Appl. Mater. Interfaces 2018, 10, 10890.

NiCo ₂ S ₄ /CC	82.5	10	150	Catal. Sci. Technol., 2020, 10, 1056- 1065
Al-Ni ₃ S ₂ /NF	75	10	86	Nanoscale, 2020, 12, 24244-24250
Mo-NiP _x /NiS _y	49	10	137	Adv. Funct. Mater. 2021, 31, 2101532
Fe-doped Co-Mo-S/NF	50.3	10	105	Dalton Trans., 2020, 49, 15009-15022
Mo-doped Ni ₃ S ₂ /NF	131.7	10	97.1	ChemistrySelect 2019, 4, 12328.
Ni ₃ S ₂ -NTFs	75.7	10	135	Appl. Catal. B, 2019, 243, 693–702
NF/Ni ₃ S ₂ -NiOOH	92	10	160	Appl. Surf. Sci., 2018, 456 (31), 164
Ni ₃ S ₂ @G	66	10	103	Appl. Surf. Sci., 2019, 465, 772
MoS_2/Ni_3S_2	61	10	98	ACS Catal., 2017, 7, 2357-2366.
$Co_3S_4@MoS_2$	43	10	136	Nano Energy, 2018, 47, 494-502.

Table S4. Comparison of the **OER** electrocatalytic activity of FeS₂@MXene in 1.0 M KOH with some representative catalysts based on transition-metal-sulfide-based electrocatalysts which have recently reported.

Sample	Tafel slope (mV dec ⁻¹)	Current density (mA cm ⁻²)	Overpotential (mV)	References
FeS ₂ @MXene	58.7	10	240	This work
FeS ₂ /C nanoparticles	92	10	240	Dalton Trans., 2018, 47, 14917-14923
FeS ₂ /C Nanowires	65.6	10	291	Materials, 2019, 12, 3364
FeS ₂ /CoS ₂ NSs	44	100	302	Small 2018, 14, 1801070
$Co_{0.25}Fe_{0.75}S_2$	50	10	324	New J. Chem., 2020, 44, 1711-1718
Co-FeS ₂ /CoS ₂	73	10	278	RSC Adv., 2018, 8, 28684-28691
Ni-FeS ₂ @Ni-FeOOH	42.6	10	230	J. Mater. Chem. A, 2017, 5, 4335-4342
Ni3S ₄ /NiS ₂ /FeS ₂	49	10	230	Appl. Sur. Sci. 2021, 560, 149985
Fe _{11.1%} -Ni ₃ S ₂ /Ni foam	61.7	10	252	J. Mater. Chem. A, 2018, 6, 4346-4353
Ni-FeS ₂ -0.5	34	10	250	Inorg. Chem. 2019, 58, 7615-7627
$Co_{0.25}Fe_{0.75}S_2$	50	10	324	New J. Chem., 2020, 44, 1711-1718

C-coated CoS ₂ -FeS ₂	105	10	240	Dalton Trans., 2020, 49, 13352-13358
NiCoS/Ti ₃ C ₂ T _x	58	10	365	ACS Appl. Mater. Interfaces 2018, 10, 22311-22319
Ni _{0.7} Fe _{0.3} PS ₃ @Mxene	36.5	10	282	Adv. Energy Mater. 2018, 8, 1801127
Ni ₃ S ₄ /NiS ₂ /FeS ₂	49	10	230	Appl. Surf. Sci. 2021, 560,149985
S-NiFe ₂ O ₄ @ Ti ₃ C ₂ @NF	46.8	20	270	Electrochim. Acta, 2019, 296, 762-770
Fe _x Ni _{1-x} S ₂ /C	43	10	248	Renew. Energ., 2021, 168, 416-423
FeS ₂ /PANI /EG	98	10	260	Appl. Sur. Sci. 2020, 505, 144534
P-Ni ₃ S ₂ /NF	30	10	256	Catal. Sci. Technol., 2020, 10, 7581- 7590
Fc-Co _x S _y	54.2	10	304	Small 2020, 16, 2001665
Fe-doped Co-Mo-S/NF	79.3	10	268	Dalton Trans., 2020, 49, 15009-15022
$Co_3S_4@MoS_2$	74	10	280	Nano Energy, 2018, 47, 494-502.
MoS_2/NiS_2 nanosheets	92	10	278	Adv. Sci., 2019, 6, 1900246.
Fe-MoS ₂ /Ni ₃ S ₂	60	10	256	Dalton Trans., 2019, 48, 12186-12192.

Table S5. Comparison of the **water splitting** electrocatalytic activity of $FeS_2@MXene$ in 1.0 M KOH with some representative catalysts based on transition-metal-sulfide-based electrocatalysts which have recently reported.

	Current density	Potential	
Sample	(mA cm ⁻²)	(V)	References
FeS ₂ @MXene	10	1.57	This work
FeS ₂ /C nanoparticles	10	1.72	Dalton Trans., 2018, 47, 14917-14923
$Ni_{0.7}Fe_{0.3}S_2$	10	1.63	J. Mater. Chem. A, 2017, 5, 15838- 15844
Fe11.1%-Ni ₃ S ₂ /Ni foam	10	1.60	J. Mater. Chem. A, 2018, 6, 4346-4353
NiS ₂ /FeS ₂ /NC	10	1.58	J. Power Sources, 2019, 436, 226857
$Co_{0.25}Fe_{0.75}S_2$	10	1.60	New J. Chem., 2020, 44, 17111718
C-coated CoS ₂ -FeS ₂	10	1.66	Dalton Trans., 2020, 49, 13352-13358
Ni ₃ S ₄ /NiS ₂ /FeS ₂	10	1.68	Appl. Sur. Sci., 2021, 560, 149985
Fe-doped Ni ₃ S ₂ -NF	10	1.56	Nanoscale, 2021, 13, 1807-1812
MoS ₂ -Ni ₃ S ₂ /NF	10	1.56	Inorg. Chem. Front., 2020, 7, 3588- 3597
NiFe-MS/MOF@NF	10	1.61	Adv. Sci. 2020, 7, 2001965

Fe-doped Co-Mo-S/NF	10	1.61	Dalton Trans., 2020, 49, 15009-15022
Ni-FeS ₂ -0.5	10	1.55	Inorg. Chem. 2019, 58, 11, 7615-7627
Ni _{0.7} Fe _{0.3} PS ₃ @MXene Ni _{0.9} Fe0 _{.1} PS ₃ @MXene	10	1.65	Adv. Energy Mater. 2018, 8, 1801127
Ni ₃ S ₂ -NGQDs/NF	10	1.58	Small 2017, 13, 1700264.
MoS ₂ /NiS nanosheets	10	1.61	J. Mater. Chem. A, 2018, 6, 9833- 9838.
Fe-MoS ₂ /Ni ₃ S ₂	10	1.61	Dalton Trans., 2019, 48, 12186-12192.
$Ni_{0.7}Fe_{0.3}S_2$	10	1.62	J. Mater. Chem. A, 2017, 5, 15838- 15844.
N-NiMoO ₄ /NiS ₂	10	1.6	Adv. Funct. Mater., 2019, 29, 1805298.
NiS ₂ /CoS ₂	10	1.61	Chem. Commun., 2019, 55, 3781- 3784.
Co ₉ S ₈ /Ni ₃ S ₂	10	1.64	Appl. Catal. B Environ., 2019, 253, 246-252.
Ni ₃ S ₂ /NF	10	1.59	J. Energy Chem., 2017, 26, 1217-1222.
Ni_3S_2 nanorods	10	1.61	J. Energy Chem., 2020, 46, 178-186.
NiS film	10	1.64	Chem. Commun., 2016, 52, 1486- 1489.
Co-FeS ₂ nanospheres	10	1.6	New J. Chem., 2020, 44, 1711-1718.

			,,
CoS ₂ nanosheets	10	1.58	Mater. Chem. Front., 2018, 2, 1732- 1738.
MoS ₂ /NiS	10	1.64	Small, 2019, 15, 1803639.
MoS_2/NiS_2 nanosheets	10	1.59	Adv. Sci., 2019, 6, 1900246.
CoS _x @MoS ₂	10	1.67	Appl. Catal. B Environ., 2019, 247, 107-114.
NiCo ₂ S ₄ nanowires	10	1.59	ChemistrySelect, 2019, 4, 1180-1187.
CoS _x /Ni ₃ S ₂	10	1.57	CS Appl. Mater. Interfaces, 2018, 10, 27712–27722.
NiS/NiS ₂	10	1.62	J. Mater. Chem. A, 2018, 6, 8233- 8237.
e-(NiCo)S _x /(OH) _x	10	1.6	Adv. Mater., 2018, 30, 1705538.