Supporting Information

Exposing the abundant active sites in amorphous NiCuFeP@Cu₃P branch-like nanoarrays for efficient electrocatalytic hydrogen evolution reaction

Jiaxing Jin, Jingmin Ge, Xuhui Zhao, Yiping Wang*, Fazhi Zhang, Xiaodong Lei*

State Key Laboratory of Chemical Resource Engineering, Beijing University of

Chemical Technology, PO Box 98, Beijing 100029, China.

Tel: +86-10-64455357; Fax: +86-10-64425385

* Corresponding author

E-mail: wangyiping@buct.edu.cn (Yiping Wang)

leixd@mail.buct.edu.cn (Xiaodong Lei)

Content Figures (on page S3-S10), Tables (on page S11-S12), References (on page S15-S-18)

SEM images for comparsion	Fig. S1
EDS result	Fig. S2
XPS surveyI	Fig. S3
LSV curvesI	Fig. S4
Overpotential and LSV curves	Fig. S5
SEM images of different deposition times	Fig. S6
Cyclic voltammograms	Fig. S7
Nernst plots	Fig. S8
SEM images of after stability test	Fig. S9
XPS images of after stability testFi	g. S10
Comparison of HER performanceTa	able S1

Fig. S1 SEM images of Cu Foam (a), Cu(OH)₂/CF (b) (inset: partial magnification of Cu(OH)₂ nanowires), NiP@Cu₃P/CF (c) and NiFeP@Cu₃P/CF (d).

Fig. S2 EDS of NiCuFeP@Cu₃P/CF

Fig. S3 XPS survey of NiCuFeP@Cu₃P/CF.

Fig. S4 LSV curves of (a) Cu₃P/CF, NiP@Cu₃P/CF and FeP@Cu₃P/CF, (b) NiFeP@Cu₃P/CF, NiCuFeP@Cu₃P/CF and CuFeP@Cu₃P/CF.

Fig. S5 Overpotential (a) and LSV curves (b) of different deposition time for NiCuFeP@Cu₃P/CF.

Fig. S6 SEM images of different deposition times (a) 10, (b) 20, (c) 40 and (d) 50 min.

Fig. S7 Cyclic voltammograms of Cu Foam (a), Cu₃P/CF (b) and NiCuFeP@Cu₃P/CF (c).

Fig. S8 Nernst plots of NiCuFeP@Cu₃P/CF with small coordinate range.

Fig. S9 SEM images of NiCuFeP@Cu₃P/CF after 20 h i-t stability test.

Fig. S10 XPS of NiCuFeP@Cu3P/CF after the HER test for (a) Ni 2p, (b) Fe 2p, (c) Cu 2p and (d) P 2p.

Catalyst	Overpotential vs. RHE (mV)	Tafel slope mV/dec	Current density (mA cm ⁻²)	Reference
NiCuFeP@Cu ₃ P/CF	38	96.8	10	This work
PSS-PPy/Ni-Co- P/CF	64	27.38	10	1
CoP/Ni ₂ P@HPNCP	106	61.89	10	2
NC _{0.9} F _{0.1} P HHAs/NF	122.5	54.36	10	3
g-FeO _x -Cu ₃ P@Cu	48	58.80	10	4
NiCu _{0.05} Fe _{0.025} PNW	64	60.80	10	5
NiCoP@Cu ₃ P/Cu	54	72	10	6
Cu ₃ P-Ni ₂ P/NF	103	80	10	7
Ni ₂ P-Cu ₃ P@NiCuC	78	173	10	8
H-MoS/MoP	92	59.80	10	9
NiFeP-MoO ₂ /NF	56	80.5	10	10
NiFeP@N-CS	186	112	10	11
FeP/HCNB	180	71	10	12
NPC FeP _{30min} / CP	140	61.92	10	13
3D FeP NS	116	57	10	14
Ni–P/Ni(OH) ₂ NTs	54.7	58	10	15
CoP@a-CoB HNRA	56.3	62.0	10	16
FF–NaCl–Ir–P	69	87.8	10	17
MoP/NiFeP HS	73	31	10	18
NiO@NiP/NF	76	98	10	19
S-NiCoP NW/CFP	102	63.3	10	20

Table S1. Comparison with some recently reported nonprecious HER electrocatalysts

measured in 1.0 M KOH.

	Cu Foom	Cu D/CE	NiCuFeP@Cu ₃ P/C	
	Cu roam	Cu31/Cr	F	
R _s	1.497	1.96	1.148	
CPE-T	0.007	0.123	0.108	
CPE-P	0.870	0.702	0.594	
R _{ct}	23.87	10.79	0.833	

Table S2. Resistance of the Cu Foam, Cu₃P/CF and NiCuFeP@Cu₃P/CF materials.

References

- F. Tian, S. Geng, L. He, Y. Huang, A. Fauzi, W. Yang, Y. Liu and Y. Yu, Interface engineering: PSS-PPy wrapping amorphous Ni-Co-P for enhancing neutral-pH hydrogen evolution reaction performance, *Chem. Eng. J.*, 2021, 417, 129232.
- R. Zhang, R. Zhu, Y. Li, Z. Hui, Y. Song, Y. Cheng and J. Lu, CoP and Ni₂P implanted in a hollow porous N-doped carbon polyhedron for pH universal hydrogen evolution reaction and alkaline overall water splitting, *Nanoscale*, 2020, 12, 23851-23858.
- 3 Y. Qi, Q. Zhang, S. Meng, D. Li, W. Wei, D. Jiang and M. Chen, Iron-doped nickle cobalt ternary phosphide hyperbranched hierarchical arrays for efficient overall water splitting, *Electrochim. Acta*, 2020, 334, 135633.
- 4 C. Tong, R. Xiang, L. Peng, L. Tan, X. Tang, J. Wang, L. Li, Q. Liao and Z. Wei, Amorphous FeO_x (x = 1, 1.5) coated Cu₃P nanosheets with bamboo leaves-like morphology induced by solvent molecule adsorption for highly active HER catalysts, *J. Mater. Chem. A*, 2020, 8, 3351-3356.
- C. Hegde, X. Sun, K. N. Dinh, A. Huang, H. Ren, B. Li, R. Dangol, C. Liu, Z.
 Wang, Q. Yan and H. Li, Cu- and Fe-Codoped Ni Porous Networks as an Active Electrocatalyst for Hydrogen Evolution in Alkaline Medium, *ACS Appl. Mater. Interfaces*, 2020, 12, 2380-2389.
- 6 X. Ma, Y. Chang, Z. Zhang and J. Tang, Forest-like NiCoP@Cu₃P supported on copper foam as a bifunctional catalyst for efficient water splitting, *J. Mater.*

Chem. A, 2018, 6, 2100-2106.

- X. Jin, J. Li, Y. Cui, X. Liu, X. Zhang, J. Yao and B. Liu, Cu₃P-Ni₂P Hybrid Hexagonal Nanosheet Arrays for Efficient Hydrogen Evolution Reaction in Alkaline Solution, *Inorg Chem*, 2019, 58, 11630-11635.
- L. Yu, J. Zhang, Y. Dang, J. He, Z. Tobin, P. Kerns, Y. Dou, Y. Jiang, Y. He and
 S. L. Suib, In Situ Growth of Ni₂P–Cu₃P Bimetallic Phosphide with
 Bicontinuous Structure on Self-Supported NiCuC Substrate as an Efficient
 Hydrogen Evolution Reaction Electrocatalyst, ACS Catal., 2019, 9, 6919-6928.
- 9 Q. Liu, Z. Xue, B. Jia, Q. Liu, K. Liu, Y. Lin, M. Liu, Y. Li and G. Li, Hierarchical Nanorods of MoS₂/MoP Heterojunction for Efficient Electrocatalytic Hydrogen Evolution Reaction, *Small*, 2020, 16, e2002482.
- X. Wu, J. Li, Y. Li and Z. Wen, NiFeP-MoO₂ hybrid nanorods on nickel foam as high-activity and high-stability electrode for overall water splitting, *Chem. Eng. J.*, 2021, 409, 128161.
- J. Hei, G. Xu, B. Wei, L. Zhang, H. Ding and D. Liu, NiFeP nanosheets on Ndoped carbon sponge as a hierarchically structured bifunctional electrocatalyst for efficient overall water splitting, *Appl. Surf. Sci.*, 2021, 549, 149297.
- Z. Peng, X. Qiu, Y. Yu, D. Jiang, H. Wang, G. Cai, X. Zhang and Z. Dong,
 Polydopamine coated prussian blue analogue derived hollow carbon nanoboxes
 with FeP encapsulated for hydrogen evolution, *Carbon*, 2019, 152, 16-23.
- 13 J. Shi, F. Qiu, W. Yuan, M. Guo, C. Yuan and Z.-H. Lu, Novel electrocatalyst of nanoporous FeP cubes prepared by fast electrodeposition coupling with acid-

etching for efficient hydrogen evolution, *Electrochim. Acta*, 2020, 329, 135185.

- 14 M. Guo, Y. Qu, C. Yuan and S. Chen, Electrochemically assisted synthesis of three-dimensional FeP nanosheets to achieve high electrocatalytic activity for hydrogen evolution reaction, *Int. J. Hydrogen Energy*, 2019, 44, 24197-24208.
- 15 F. Zhao, H. Liu, H. Zhu, X. Jiang, L. Zhu, W. Li and H. Chen, Amorphous/amorphous Ni–P/Ni(OH)₂ heterostructure nanotubes for an efficient alkaline hydrogen evolution reaction, *J. Mater. Chem. A*, 2021, 9, 10169-10179.
- 16 P. Shi, Y. Zhang, G. Zhang, X. Zhu, S. Wang and A.-L. Wang, A crystalline/amorphous CoP@CoB hierarchical core-shell nanorod array for enhanced hydrogen evolution, *J. Mater. Chem. A*, 2021, 9, 19719-19724.
- 17 Z. Zhao, W. Jin, L. Xu, C. Wang, Y. Zhang and Z. Wu, Ultrafine Ir nanoparticles decorated on FeP/FeOOH with abundant interfaces via a facile corrosive approach for alkaline water-splitting, *J. Mater. Chem. A*, 2021, 9, 12074-12079.
- 18 L. Lin, M. Chen and L. Wu, Hierarchical MoP/NiFeP hybrid hollow spheres as highly efficient bifunctional electrocatalysts for overall water splitting, *Mater. Chem. Front.*, 2021, 5, 375-385.
- 19 C. Sun, H. Wang, J. Ren, X. Wang and R. Wang, Inserting ultrafine NiO nanoparticles into amorphous NiP sheets by in situ phase reconstruction for high-stability of the HER catalysts, *Nanoscale*, 2021, 13, 13703-13708.
- 20 Y. Qi, L. Zhang, L. Sun, G. Chen, Q. Luo, H. Xin, J. Peng, Y. Li and F. Ma, Sulfur doping enhanced desorption of intermediates on NiCoP for efficient

alkaline hydrogen evolution, Nanoscale, 2020, 12, 1985-1993.