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Characterization: TEM images were taken on a JEOL-JEM-2010 (JEOL, Japan) 

transmission electron microscope operated at 200 kV. The field emission scanning 

electron microscope (SEM) was JSM-7800F and equipped with an energy dispersive 

X-ray spectroscope. The powder X-ray diffraction (XRD) patterns were recorded by a 

Bruke D8 diffractometer with Cu K radiation (= 1.5418 Å) at a rate of 7°/min. The 

specific area was measured via Brunauer-Emmett-Teller (BET) method by N2 

adsorption-desorption isotherms (TriStar II 3020, Micromeritics Instrument 

Corporation, USA). X-ray photoelectron spectroscopy (XPS) analysis was collected on 

an ESCALab MKII X-ray photoelectron spectrometer using Mg K radiation. 

Ultraviolet visible (UV-vis) diffuse reflection data were recorded using a UV-vis 

spectrophotometer (Shimadzu UV-3600 plus, Japan), and BaSO4 was used as a 

reflectance standard material. The photoluminescence (PL) spectra were obtained by a 

QuantaMaster & TimeMaster Spectrofluorometer. 

Photocatalytic activity tests: Photocatalytic H2O2 production experiments were 

conducted with H2O, O2, and visible light irradiation at ambient temperature (25 ◦C). 

Exactly, 0.05 g of catalyst was suspended in 50 mL of distilled water in a glass reactor. 

Adsorption equilibrium was achieved following 30 min of stirring in the dark. 

Thereafter, the system was irradiated by visible light. 3mL of suspension was taken 

from reaction mixture and mixed with 0.75 mL of 0.4 M KI solution with 0.01 M 

ammonium molybdate and 0.75 mL of 0.1M C6H5KO4 for 10 min. Absorbance was 

detected by UV–vis diffuse reflectance spectroscopy in 352nm. O2 and N2 was then 

bubbled into this system for 30 min to obtain an O2-equilibrated environment and N2-

equilibrated environment. 

Photoelectrochemical measurement: The photocurrents were measured by a CHI 

660B electrochemical system, which was Equipped with a standard three-electrode 

system. 1 mg sample powder is dispersed ultrasonically in 1 mL deionized water, and 

20 μL of the resulting colloidal dispersion (1 mg/mL) is drop-cast onto a piece of ITO 

with a fixed area of 0.5 cm2 and then dried under an infrared lamp to form the sample-

modified ITO electrode. In the experiment, an ITO with a sample on it was used as a 

working electrode. Pt wire was employed as the counter electrode and the reference 
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electrode was Ag/AgCl/sat. KCl. A bias potential of -0.2 V (VS. Ag/AgCl) was 

employed. Na2SO4 solution (0.1 M) was used as the electrolyte. The light source was a 

500 W Xe lamp.

Transient photovoltage (TPV) measurements: The TPV measurements were 

conducted at room temperature, including ex-situ and in-situ modes. In ex-situ mode, 

the platinum gage (1 cm×1 cm) with 20 mg sample was treated as the working electrode 

and Pt wires were used as the counter electrodes. In in-situ modes, working electrodes 

(1 cm×2 cm) were prepared by depositing samples (100 μL, 2 mg·mL-1) on indium-

tin-oxide (ITO) glass substrates, then dried in air. During the testing process, the 

working electrodes were kept wet with N2 saturated 1 vol‰ H2O/anhydrous acetonitrile 

aqueous (v/v) and N2 or O2 saturated anhydrous acetonitrile, respectively. These 

samples were excited by a laser radiation pulse (λ=355 nm, pulse width 5 ns) from a 

third-harmonic Nd: YAG laser (Polaris II, New Wave Research, Inc.). The signal of the 

TPV was amplified by the amplifier and recorded by the oscilloscope.
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Fig. S1. (a) EDX spectra; (b) SEM image of CdS-0; (c-d) EDS elemental mappings for

Cd and S corresponding to (b).

Fig. S2. (a) EDX spectra; (b) SEM image of CdS-1; (c-d) EDS elemental mappings for

Cd and S corresponding to (b).
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Fig. S3. N2 adsorption-desorption isotherm of CdS-0 and CdS-1.

Fig. S4. Contact angles of CdS: (a–d) CdS-0; (e-h) CdS-1.
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Fig. S5. Images of dispersed catalysts in water with different treatment: (a) CdS-0; (b) CdS-1.

Fig. S6. The work curve of the concentration of H2O2 and the absorption
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Fig. S7. (a) XRD; (b) SEM image; (c) N2 adsorption-desorption isotherm; (d) Photocatalytic H2O2 

production of CdS-OH.

Fig. S8. (a) SEM image of CdS-1; (b) XRD pattern of CdS-1 after 3 cycles.
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Fig. S9. Comparison of the in-situ transient photovoltage with CdS-0 in different conditions.
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