

## -Electronic Supplementary Information-

Figure S1. XRD pattern of as-prepared Cu/Co/CoS<sub>2</sub>@S,N-C, Co/CoS<sub>2</sub>@S,N-C, Cu@S,N-C.



**Figure S2.** FTIR spectra of Cu(OH)<sub>2</sub> NRs/Co(OH)<sub>2</sub> NSs-PPy and Cu/Co/CoS<sub>2</sub>@S,N-C.



**Figure S3.** The corresponding elemental mapping images for C, N, S, Cu and Co of Cu/Co/CoS<sub>2</sub>@S,N-C.



Figure S4. SEM images of (a)  $Cu(OH)_2$  NRs/Co(OH)<sub>2</sub> NSs, (b)  $Cu(OH)_2$  NRs/Co(OH)<sub>2</sub> NSs-PPy, (c)  $Cu/Co/CoS_2@S,N-C$  and (d)  $Cu/Co/CoS_2@S,N-C$  after 30000 s.



**Figure S5.** The corresponding elemental mapping images for C, N, S, Cu and Co of Cu/Co/CoS<sub>2</sub>@S,N-C after 30000 s.



**Figure S6.** Raman spectra of Cu/Co/CoS<sub>2</sub>@S,N-C-900 (a), Cu/Co/CoS<sub>2</sub>@S,N-C-1100 (b), Cu/Co/CoS<sub>2</sub>@S,N-C (1 mg), Cu/Co/CoS<sub>2</sub>@S,N-C (20 mg).



**Figure S7.** High-resolution C 1s (a), N 1s (b), Co 2p (c), Cu 2p (d), spectra of Cu/Co/ @NC.



Figure S8. High-resolution S 1s (d), C 1s (a), N 1s (b), Co 2p (c), spectra of  $Co/CoS_2@S,N-C$ .



Figure S9. High-resolution S 1s (d), C 1s (a), N 1s (b), Co 2p (c), spectra of Cu@S,N-C.



Figure S10. High-resolution S 1s (d), C 1s (a), N 1s (b), Co 2p (c), spectra of  $Cu/Co/CoS_2@S,N-C-900$ .



Figure S11. High-resolution S 1s (d), C 1s (a), N 1s (b), Co 2p (c), spectra of  $Cu/Co/CoS_2@S,N-C-1100$ .



Figure S12. High-resolution S 1s (d), C 1s (a), N 1s (b), Co 2p (c), spectra of  $Cu/Co/CoS_2@S,N-C$  (5 mg).



Figure S13. High-resolution S 1s (d), C 1s (a), N 1s (b), Co 2p (c), spectra of  $Cu/Co/CoS_2@S,N-C$  (100 mg).

**Table S1** Pyridinic N & graphitic N dopant,  $sp^2C$  content and the  $I_D/I_G$  value of<br/>Cu/Co/CoS2@S,N-C, Cu/Co/CoS2@S,N-C-900, Cu/Co/CoS2@S,N-C-1100,<br/>Cu/Co/CoS2@S,N-C (5 mg) and Cu/Co/CoS2@S,N-C (100 mg).

| Sample                                 | pyridinic N&<br>graphitic N | sp <sup>2</sup> C | $I_{\rm D}/I_{\rm G}$ |
|----------------------------------------|-----------------------------|-------------------|-----------------------|
| Cu/Co/CoS <sub>2</sub> @S,N-C          | 80 %                        | 61 %              | 1.88                  |
| Cu/Co/CoS <sub>2</sub> @S,N-C-900      | 70 %                        | 48 %              | 1.51                  |
| Cu/Co/CoS <sub>2</sub> @S,N-C-1100     | 67 %                        | 51%               | 1.43                  |
| Cu/Co/CoS <sub>2</sub> @S,N-C (5 mg)   | 69 %                        | 44%               | 1.41                  |
| Cu/Co/CoS <sub>2</sub> @S,N-C (100 mg) | 72 %                        | 55%               | 1.55                  |



**Figure S14.** (a) LSV curves of the Cu/Co/CoS<sub>2</sub>@S,N-C made from Cu(OH)<sub>2</sub> NRs/Co(OH)<sub>2</sub> NSs with variable contents in 0.1 M KOH; (b) LSVs of the Cu(OH)<sub>2</sub> NRs/Co(OH)<sub>2</sub> NSs calcined at various temperatures.



Figure S15. LSV curves of the Cu-Co-CoS<sub>2</sub>@S,N-C and Cu/Co/CoS<sub>2</sub>@S,N-C.



Figure S16. CV curves of the Co/CoS<sub>2</sub>@S,N-C, Cu/Co@NC and Cu/Co/CoS<sub>2</sub>@S,N-C.



Figure S17. Gas volume versus time and corresponding Faradaic efficiency of Cu/Co/CoS2@S,N-C.



Figure S18. Magnified HRTEM image of Cu/Co/CoS<sub>2</sub>@S,N-C.



Figure S19. TEM image of Cu/Co/CoS<sub>2</sub>@S,N-C after 30000 s.



Figure S20. Bifunctional catalytic activity between the ORR and OER of Cu/Co/CoS2@S,N-C, RuO2 and Pt/C.

| Catalysts                                      | E <sub>onset,</sub><br>ORR (V) | E <sub>1/2,ORR</sub><br>(V) | Current<br>density<br>(mA cm <sup>-2</sup> ) | Electro<br>lyte | E <sub>j=10</sub> ,<br>oer(V) | Electr<br>o<br>lyte | Referenc<br>e |
|------------------------------------------------|--------------------------------|-----------------------------|----------------------------------------------|-----------------|-------------------------------|---------------------|---------------|
| Cu/Co/CoS2@S<br>,N-C                           | 0.881                          | 0.811                       | 7.03                                         | 0.1 M           | 1.657                         | 0.1 M               | This<br>work  |
| M-NC-CoCu                                      | 0.85                           | 0.75                        | -                                            | 0.1 M           | 1.54                          | 1 M                 | 1             |
| CuCoS-4/N-<br>rGO                              | 0.97                           | 0.86                        | 5.2                                          | 0.1 M           | 1.52                          | 1 M                 | 2             |
| CuCoS/CC                                       | -                              | -                           | -                                            | -               | 1.51                          | 1 M                 | 3             |
| Cu-SAs@N-<br>CNS                               | 1.01                           | 0.9                         | 5.5                                          | 0.1 M           | -                             | -                   | 4             |
| CaMnO <sub>3</sub> -δ                          | 0.84                           | 0.80                        | 4.27                                         | 0.1M            | -                             | -                   | 5             |
| Co-S-C-700                                     | 0.8                            | 0.79                        | -                                            | 0.1 M           | 1.58                          | 0.1 M               | 6             |
| CoNi/NHCS-<br>TUC-3                            | 0.91                           | 0.88                        | 5.13                                         | 0.1 M           | -                             | -                   | 7             |
| Co <sub>0.5</sub> Fe <sub>0.5</sub> S@N-<br>MC | 0.913                          | 0.808                       | 5                                            | 0.1 M           | 1.57                          | 1 M                 | 8             |
| Fe-Co-S/N                                      | -                              | -                           | -                                            | -               | 1.56                          | 1 M                 | 9             |
| Zn-Co-S@NSC                                    | 0.955                          | -                           | 5.92                                         | 0.1 M           | -                             | -                   | 10            |

**Table S2** Comparison of ORR/OER performances of reported  $Cu/Co/CoS_2@S,N-C$  - based electrocatalysts.

## References

- A. M. Andrade, Z. Liu, S. Grewal, A. J. Nelson and H. L. Min, MOF-derived Co/Cu-embedded Ndoped carbon for trifunctional ORR/OER/HER catalysis in alkaline media, *Dalton Trans.*, 2021, 50, 5473-5482.
- H. Zhang, X. Wang, Z. Yang, S. Yan, C. Zhang and S. Liu, Space-confined synthesis of lasagna-like N-doped graphene-wrapped copper-cobalt sulfides as efficient and durable electrocatalysts for oxygen reduction and oxygen evolution reactions, ACS Sustainable Chem. Eng., 2019, 8, 1004-1014.
- H. Luo, H. Lei, Y. Yuan, Y. Liang, Y. Qiu, Z. Zhu and Z. Wang, Engineering ternary copper-cobalt sulfide nanosheets as high-performance electrocatalysts toward oxygen evolution reaction, *Catalysts*, 2019, 9, 459.
- L. Zong, K. Fan, W. Wu, L. Cui, L. Zhang, B. Johannessen, D. Qi, H. Yin, Y. Wang, P. Liu, L. Wang and H. Zhao, Anchoring single copper atoms to microporous carbon spheres as high - performance electrocatalyst for oxygen reduction reaction, *Adv. Funct. Mater.*, 2021, **31**, 2104864.

- N. Tham, X. Ge, A. Yu, B. Li, Y. Zong and Z. Liu, Porous calcium-manganese oxide/carbon nanotube microspheres as efficient oxygen reduction catalysts for rechargeable zinc-air batteries, *Inorg. Chem. Front.*, 2021, 8, 368-375.
- J. Tan, R. Li, S. A. Raheem, L. Pan, H. Shen, J. Liu, M. Gao and M. Yang, Facile construction of carbon encapsulated of earth - abundant metal sulfides for oxygen electrocatalysis, *ChemElectroChem*, 2021, 8, 3533-3537.
- K. Sheng, Q. Yi, A. L. Chen, Y. Wang, Y. Yan, H. Nie and X. Zhou, CoNi nanoparticles supported on N-doped bifunctional hollow carbon composites as high-performance ORR/OER catalysts for rechargeable Zn-air batteries, *ACS Appl. Mater. Interfaces*, 2021, 13, 45394-45405.
- M. Shen, C. Ruan, Y. Chen, C. Jiang, K. Ai and L. Lu, Covalent entrapment of cobalt–iron sulfides in N-doped mesoporous carbon: extraordinary bifunctional electrocatalysts for oxygen reduction and evolution reactions, *ACS Appl. Mater. Interfaces*, 2015, 7, 1207-1218.
- X. Li, G. Zhu, L. Xiao, Y. Liu, Z. Ji, X. Shen, L. Kong and S. A. Shah, Loading of Ag on Fe-Co-S/N-doped carbon nanocomposite to achieve improved electrocatalytic activity for oxygen evolution reaction, *J. Alloys Compd.*, 2019, 773, 40-49.
- 10. C. Li, J. Balamurugan, N. H. Kim and J. H. Lee, Hierarchical Zn-Co-S nanowires as advanced electrodes for all solid state asymmetric supercapacitors, *Adv. Energy Mater.*, 2018, **8**, 1702014.