Electronic Supplementary Information (ESI) for

Porosity regulation of metal-organic frameworks for high proton conductivity by rational ligand design: mono- versus disulfonyl-4,4'biphenyldicarboxylic acid

Shunlin Zhang, ${ }^{a}$ Yuxin Xie, ${ }^{a}$ Mengrui Yang, ${ }^{a}$ Dunru Zhu ${ }^{\text {ab* }}$
a College of Chemical Engineering, State Key Laboratory of Materials-oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing, Jiangsu 211816, China.
${ }^{\mathrm{b}}$ State Key Laboratory of Coordination Chemistry, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, China.
*Correspondence e-mail: zhudr@njtech.edu.cn

Contents

1. The FT-IR and ${ }^{1} \mathrm{HNMR}$ spectra of $\mathbf{H}_{3} \mathbf{L}$ S2
2. Molecular structures of MOFs 1-3 S3
3. The FT-IR spectra of MOFs 1-3 S4
4. The PXRD patterns of MOFs 1-3 S5
5. The thermogravimetric analysis of MOFs 1-3 S7
6. Crystal structure determination S8
7. Proton conductivity \cdot measurement S10

1. The FT-IR and ${ }^{\mathbf{1}} \mathrm{HNMR}$ spectra of $\mathrm{H}_{3} \mathrm{~L}$

Fig. S1 FT-IR spectra of $\mathbf{H}_{3} \mathbf{L}$.

Fig. S2 ${ }^{1} \mathrm{HNMR}$ spectrum of $\mathbf{H}_{\mathbf{3}} \mathbf{L}$
2. Molecular structures of MOFs 1-3

Fig. S3 Asymmetric unit of $\mathbf{1}$ (H and disordered atoms are omitted for clarity).

Fig. S4 Asymmetric unit of 2 (H and disordered atoms are omitted for clarity).

Fig. S5 Asymmetric unit of $\mathbf{3}$ (H and disordered atoms are omitted for clarity).

3. The FT-IR spectra of MOFs 1-3

Fig. S6 FT-IR spectra of $\mathbf{1}$.

Fig. S7 FT-IR spectra of 2.

Fig. S8 FT-IR spectra of $\mathbf{3}$.

4. The PXRD patterns of MOFs 1-3

Fig. S9 Experimental and simulated powder X-ray diffraction patterns of MOFs 1-3.

Fig. S10 Experimental and simulated PXRD patterns of $\mathbf{2}$ and after 72h AC impedance measurements.

Fig. S11 Experimental PXRD patterns of $\mathbf{2}$ and after water immersion.

5. The thermogravimetric analysis of MOFs 1-3

Fig. $\mathbf{S 1 2}$ TGA curve for $\mathbf{1}$

Fig. $\mathbf{S 1 3}$ TGA curve for $\mathbf{2}$

Fig. S14 TGA curve for $\mathbf{3}$

6. Crystal structure determination

Table S1 Crystallographic data for MOFs 1-3

MOFs	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
Empirical formula	$\mathrm{C}_{32} \mathrm{H}_{49} \mathrm{EuN}_{2} \mathrm{O}_{23} \mathrm{~S}_{2}$	$\mathrm{C}_{32} \mathrm{H}_{49} \mathrm{GdN}_{2} \mathrm{O}_{23} \mathrm{~S}_{2}$	$\mathrm{C}_{32} \mathrm{H}_{49} \mathrm{TbN}_{2} \mathrm{O}_{23} \mathrm{~S}_{2}$
Formula weight	1045.83	1051.11	1052.79
Crystal system	Orthorhombic	Orthorhombic	Orthorhombic
Space group	Pnnn	Pnnn	Pnnn
$a(\AA)$	$14.1253(17)$	$14.1306(15)$	$14.1106(8)$
$b(\AA)$	$17.038(2)$	$17.0415(18)$	$17.1352(9)$
$c(\AA)$	$22.649(3)$	$22.636(2)$	$22.4486(12)$
$V\left(\AA^{3}\right)$	$5450.9(12)$	$5450.9(10)$	$5427.8(5)$
Z	4	4	4
$\left.D_{\mathrm{c}}(\mathrm{g} \cdot \mathrm{cm})^{-3}\right)$	1.096	1.103	1.109
$\mu\left(\mathrm{~mm}^{-1}\right)$	1.275	1.341	1.428
$F(000)$	1808.0	1812.0	1816.0
Crystal size $\left.(\text { mm })^{3}\right)$	$0.25 \times 0.15 \times 0.10$	$0.25 \times 0.13 \times 0.10$	$0.25 \times 0.13 \times 0.10$
θ Range $\left({ }^{\circ}\right)$	$1.496-24.998$	$1.496-24.998$	$1.495-25.048$
Reflections collected	36995	36891	36784
Independent reflections	$4826\left[R_{\text {int }}=0.044\right]$	$4826\left[R_{\text {int }}=0.0268\right]$	$4825\left[R_{\text {int }}=0.0407\right]$
Reflections observed	$[I$	3087	3331
$2 \sigma(I)]$			3064
Data/restraints $/$ parameters	$4826 / 360 / 321$	$4826 / 216 / 323$	$4825 / 372 / 321$
Goodness-of-fit on F^{2}	1.090	1.082	1.099
$R / w R_{2}[I>2 \sigma(I)]$	$0.0624 / 0.2249$	$0.0597 / 0.2134$	$0.0629 / 0.2261$
$R / w R_{2}($ all data $)$	$0.0889 / 0.2503$	$0.0783 / 0.2381$	$0.0905 / 0.2502$
Max., Min. $\Delta \rho\left(\mathrm{e} \cdot \AA^{-3}\right)$	$1.325,-0.906$	$2.156,-0.820$	$2.001,-0.866$

Table S2 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for 1-3

1			
Eu1-O1	2.414(5)	Eu1-O3 ${ }^{\text {i }}$	2.477(6)
Eu1-O2 ${ }^{\text {ii }}$	$2.313(5)$	Eu1-O4 ${ }^{\text {i }}$	2.487 (5)
2			
Gd1-O1	2.413(4)	Gd1-O3 ${ }^{\text {i }}$	2.468(5)
Gd1-O2 $2^{\text {ii }}$	2.311(4)	Gd1-O4 ${ }^{\text {i }}$	2.485 (4)
3			
Tb1-O1	2.373(5)	Tb1-O3 ${ }^{\text {i }}$	2.455(5)
$\mathrm{Tb} 1-\mathrm{O} 2^{\text {ii }}$	$2.289(5)$	Tb1-O4 ${ }^{\text {i }}$	2.458 (5)
1			
O2-Eu1-O2 ${ }^{\text {ii }}$	107.2(3)	O3 ${ }^{\text {i }}$-Eu1-O3 ${ }^{\text {iv }}$	95.0(3)
O2-Eu1-O1	80.70(18)	O2-Eu1-O4 ${ }^{\text {i }}$	156.86(18)
$\mathrm{O} 2{ }^{\text {iii }}$-Eu1-O1	81.03(19)	$\mathrm{O} 2{ }^{\text {ii }}-\mathrm{Eu} 1-\mathrm{O} 4{ }^{\text {i }}$	78.71(18)
O2-Eu1-O1 ${ }^{\text {iii }}$	81.03(19)	O1-Eu1-O4 ${ }^{\text {i }}$	78.14(17)
O2 ${ }^{\text {iii-Eu1-O1 }}{ }^{\text {iii }}$	80.70(18)	$\mathrm{O} 1^{\text {iii- }}$ - ${ }^{\text {a }} 1-\mathrm{O} 4{ }^{\text {i }}$	122.10(17)
O1-Eu1-O1 ${ }^{\text {iii }}$	149.0(2)	O3i-Eu1-O4 ${ }^{\text {i }}$	52.45(17)
O2-Eu1-O3 ${ }^{\text {i }}$	147.94(18)	$\mathrm{O} 3{ }^{\text {iv}}-\mathrm{Eu} 1-\mathrm{O} 4{ }^{\text {i }}$	77.61(18)
$\mathrm{O} 2{ }^{\text {ii }}$-Eu1-O3 ${ }^{\text {i }}$	87.42(19)	O2-Eu1-O4 $4^{\text {iv }}$	78.71(18)
O1-Eu1-O3 ${ }^{\text {i }}$	130.58(18)	$\mathrm{O} 2^{\text {ii- }}$ - ${ }^{\text {a }} 1-\mathrm{O} 4^{\text {iv }}$	156.86(18)
O1 ${ }^{\text {iii-Eu1-O3 }}{ }^{\text {i }}$	73.20(19)	O1-Eu1-O4 ${ }^{\text {iv }}$	122.10(17)
O2-Eu1-O3 ${ }^{\text {iv }}$	87.42(19)	O1 ${ }^{\text {iii-Eu1-O4 }}{ }^{\text {iv }}$	78.14(17)
$\mathrm{O} 2^{\text {ii }}-\mathrm{Eu} 1-\mathrm{O}^{\text {iv }}$	147.94(18)	O3 ${ }^{\text {i-Eu1-O4 }}{ }^{\text {iv }}$	77.61(18)
O1-Eu1-O3 ${ }^{\text {iv }}$	73.20(19)	O3 ${ }^{\text {iv }}-\mathrm{Eu} 1-\mathrm{O} 4^{\text {iv }}$	52.45(17)
O1 $1^{\text {iii-Eu1-O3 }}{ }^{\text {iv }}$	130.58(18)	O4-Eu1-O4 ${ }^{\text {iv }}$	104.9(2)
2			
$\mathrm{O} 2-\mathrm{Gd} 1-\mathrm{O} 2{ }^{\text {ii }}$	106.7(2)	O3 ${ }^{\text {- }}$ Gd1-O3 ${ }^{\text {iv }}$	95.2(3)
O2-Gd1-O1	81.13(16)	$\mathrm{O} 2-\mathrm{Gd} 1-\mathrm{O} 4^{\text {i }}$	156.78(15)
$\mathrm{O} 2{ }^{\text {iii }}$-Gd1-O1	81.13(16)	$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Gd} 1-\mathrm{O} 4{ }^{\text {i }}$	79.03(15)
O2-Gd1-O1 $1^{\text {iii }}$	81.13(16)	O1-Gd1-O4 ${ }^{\text {i }}$	78.14(14)
$\mathrm{O} 2{ }^{\text {iii }}$-Gd1-O1 $1^{\text {iii }}$	80.57(15)	$\mathrm{O} 1^{\text {iii }}-\mathrm{Gd} 1-\mathrm{O} 4^{\text {i }}$	122.08(14)
O1-Gd1-O1 $1^{\text {iii }}$	149.1(2)	O3 ${ }^{\text {i }}$-Gd1-O4 $4^{\text {i }}$	52.60(14)
O2-Gd1-O3 ${ }^{\text {i }}$	147.97(14)	O3 ${ }^{\text {iv}}-\mathrm{Gd} 1-\mathrm{O} 4^{\text {i }}$	77.49(15)
$\mathrm{O} 2{ }^{\text {ii }}-\mathrm{Gd} 1-\mathrm{O} 3^{\text {i }}$	87.54(16)	O2-Gd1-O4 ${ }^{\text {iv }}$	79.03(15)
O1-Gd1-O3 ${ }^{\text {i }}$	130.72(15)	$\mathrm{O} 2^{\text {iii-Gd1-O4 }} 4^{\text {iv }}$	156.78(15
$\mathrm{O} 1^{\text {iii- }}$-Gd1-O3 ${ }^{\text {i }}$	72.98(16)	O1-Gd1-O4 ${ }^{\text {iv }}$	78.14(14)
$\mathrm{O} 2-\mathrm{Gd} 1-\mathrm{O} 3^{\text {iv }}$	87.54(16)	$\mathrm{O} 1^{\text {iiii-Gd1-O}} 4^{\text {iv }}$	122.08(14
$\mathrm{O} 2{ }^{\text {iii-Gd1-O3 }}{ }^{\text {iv }}$	147.97(15)	O3-Gd1-O4 ${ }^{\text {iv }}$	77.49 (15)
O1-Gd1-O3 ${ }^{\text {iv }}$	72.98(16)	$\mathrm{O} 3^{\text {iv }}-\mathrm{Gd} 1-\mathrm{O} 4^{\text {iv }}$	52.60(14)
$\mathrm{Ol}^{\text {iii- }}$-Gd1-O3 ${ }^{\text {iv }}$	130.72(14)	O 4 - $\mathrm{Gd} 1-\mathrm{O} 4^{\text {iv }}$	104.7(2)
3			
$\mathrm{O} 2-\mathrm{Tb} 1-\mathrm{O} 2^{\text {ii }}$	107.2(3)	O3 ${ }^{\text {i }}$ - $\mathrm{Tb} 1-\mathrm{O}^{\text {iv }}{ }^{\text {iv }}$	94.6(3)
O2-Tb1-O1	80.12(19)	$\mathrm{O} 2-\mathrm{Tb} 1-\mathrm{O} 4{ }^{\text {i }}$	156.19(18)

$\mathrm{O} 2{ }^{\text {iii }}$-Tb1-O1	80.90(19)	$\mathrm{O} 2^{\mathrm{ii}}-\mathrm{Tb} 1-\mathrm{O} 4^{\mathrm{i}}$	78.49(18)
$\mathrm{O} 2-\mathrm{Tb} 1-\mathrm{O} 1^{\text {iii }}$	80.9(2)	$\mathrm{O} 1-\mathrm{Tb} 1-\mathrm{O} 4^{\text {i }}$	77.99(18)
$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Tb} 1-\mathrm{O} 1^{\text {iii }}$	80.12(19)	$\mathrm{O} 1^{\text {iii }}-\mathrm{Tb} 1-\mathrm{O} 4^{\text {i }}$	122.88(18)
$\mathrm{O} 1-\mathrm{Tb} 1-\mathrm{O} 1^{\text {iii }}$	147.7(3)	O3i-Tb1-O4 ${ }^{\text {i }}$	52.82(18)
$\mathrm{O} 2-\mathrm{Tb} 1-\mathrm{O} 3^{\text {i }}$	148.32(18)	$\mathrm{O} 3^{\text {iv }}-\mathrm{Tb} 1-\mathrm{O} 4{ }^{\text {i }}$	77.71(18)
$\mathrm{O} 2{ }^{\text {iii }}$ - $\mathrm{Tb} 1-\mathrm{O} 3^{\text {i }}$	87.36(19)	$\mathrm{O} 2-\mathrm{Tb} 1-\mathrm{O} 4{ }^{\text {iv }}$	78.49(18)
$\mathrm{O} 1-\mathrm{Tb} 1-\mathrm{O} 3^{\text {i }}$	130.79(18)	$\mathrm{O} 2^{\text {iii }}-\mathrm{Tb} 1-\mathrm{O} 4^{\text {iv }}$	156.19(18)
$\mathrm{O} 1^{\text {iiii- }}$ - ${ }^{\text {l }} 1-\mathrm{O3}^{\text {i }}$	73.94(19)	$\mathrm{O} 1-\mathrm{Tb} 1-\mathrm{O} 4^{\text {iv }}$	122.88(18)
$\mathrm{O} 2-\mathrm{Tb} 1-\mathrm{O3}^{\text {iv }}$	87.36(19)	$\mathrm{O} 1^{\text {iiii }}-\mathrm{Tb} 1-\mathrm{O} 4^{\text {iv }}$	77.99(18)
$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Tb} 1-\mathrm{O} 3^{\text {iv }}$	148.32(18)	$\mathrm{O} 3{ }^{\text {i }}$ - $\mathrm{Tb} 1-\mathrm{O} 4{ }^{\text {iv }}$	77.71(18)
O1-Tb1-O3 ${ }^{\text {iv }}$	73.9(2)	$\mathrm{O}^{3 \mathrm{iv}}-\mathrm{Tb} 1-\mathrm{O} 4^{\text {iv }}$	52.82(18)
$\mathrm{O} 1^{\text {iii- }} \mathrm{Tb} 1-\mathrm{O}^{\text {iv }}$	130.79(18)	$\mathrm{O} 4{ }^{\text {i }} \mathrm{Tb} 1-\mathrm{O} 4{ }^{\text {iv }}$	105.9(3)

Symmetry codes: (i) $1 / 2+x, 1-y, 1 / 2+z$; (ii) $1 / 2-x, y, 3 / 2-z$; (iii) $x, 1 / 2-y, 3 / 2-z$; (iv) $1 / 2+x, 1 / 2-y, 1-z$.

Table S3 Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$ for 2

D-H $\cdots \mathrm{A}$	d(D-H)	$\mathrm{d}(\mathrm{H} \cdots \mathrm{A})$	$\mathrm{d}(\mathrm{D} \cdots \mathrm{A})$	$\angle \mathrm{D}-\mathrm{H} \cdots \mathrm{A}$
N1-H1A \cdots O4	0.89	2.26	2.893(10)	128
N1-H1B $\cdots{ }^{\text {O }}{ }^{\text {i }}$	0.89	1.85	2.604(3)	141
O1W-H1WA \cdots O7	0.85	2.53	$3.352(5)$	163
O1W-H1WB $\cdots{ }^{\text {O }}{ }^{\text {ii }}$	0.85	2.92	3.751 (5)	169
O1W-H1WC…O7A ${ }^{\text {iii }}$	0.85	2.96	3.734(6)	154
O1WA-H1WD \cdots O6	0.85	2.19	3.009(2)	161
O1WA-H1WE \cdots O5 ${ }^{\text {i }}$	0.85	2.50	3.123(4)	131
O1WA-H1WF \cdots O1WA ${ }^{\text {iv }}$	0.85	2.39	3.230 (7)	170
C15-H15C \cdots O4	0.96	2.48	3.004(2)	115
C16-H16C $\cdots \pi^{\text {i }}$	0.96	2.67	3.598(3)	162
C6-H6 $\cdots \pi^{\text {v }}$	0.93	3.24	3.943(2)	134

Symmetry codes: (i) $1 / 2-x, y, 1 / 2-z$; (ii) $1 / 2-x, 1 / 2-y, z$; (iii) $x-1 / 2, y-1 / 2,1-z$; (iv) x, $1 / 2-y, 1 / 2-z$; (v) $-x, 1-y, 1-z$.

7. Proton conductivity measurement

Fig. S15 Temperature-dependent Nyquist plots of $\mathbf{2}$ under 30\% RH

Fig. S16 Temperature-dependent Nyquist plots of 2 under 40% RH

Fig. S17 Temperature-dependent Nyquist plots of $\mathbf{2}$ under 50\% RH

Fig. S18 Arrhenius plot of 2 at $30-60 \%$ RH

Table S4 Proton conductivities for $\mathbf{2}$ at various RH and temperature

$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	$30 \% \mathrm{RH}$	$40 \% \mathrm{RH}$	$50 \% \mathrm{RH}$	$60 \% \mathrm{RH}$
	1.06×10^{-5}	2.32×10^{-5}	1.16×10^{-4}	2.35×10^{-4}
35	1.84×10^{-5}	3.75×10^{-5}	1.70×10^{-4}	3.80×10^{-4}
45	2.28×10^{-5}	8.76×10^{-5}	2.65×10^{-4}	6.20×10^{-4}
55	4.04×10^{-5}	1.38×10^{-4}	5.32×10^{-4}	1.01×10^{-3}
65	5.23×10^{-5}	2.63×10^{-4}	8.04×10^{-4}	2.31×10^{-3}
75	8.06×10^{-5}	4.50×10^{-4}	1.38×10^{-3}	3.80×10^{-3}
85	1.45×10^{-4}	7.28×10^{-4}	2.51×10^{-3}	5.22×10^{-3}
95	3.22×10^{-4}	1.06×10^{-3}	5.62×10^{-3}	8.83×10^{-3}

