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Supporting Information

Experimental
Reagents and materials

Ethylenediaminetetraacetic acid disodium cobalt salt hydrate (Na2CoEDTA), 

Hexachloroplatinic acid hexahydrate (H2PtCl6·6H2O, 99.9 %), Ammonia borane 

(NH3BH3, 98 %), sodium hydroxide (NaOH) were purchased from Aladdin. 

Deuterium oxide (D2O) was obtained from Innochem. All other reagents were 

commercially available and used without further purification.

Characterizations

The morphology and structure of the samples were characterized using 

transmission electron microscopy (TEM) on a JEOL JEM-2100 FFEGTEM. The 

morphology and distribution of element of the catalysts were tested by scanning 

electron microscopy (SEM, Sigma 500 field emission scanning electron microscope). 

Powder X-ray diffraction (XRD) was performed on Rigaku D/Max-2400X with Cu 

Ka radiation. X-ray photoelectron spectroscopy (XPS) spectra were obtained from an 

ESCALABMKLL X-ray photoelectron spectrometer using an Al Kα source. The 

thermo gravimetric analysis (TGA) was measured using Diamond TG/DTA 

instruments (STA 449C Jupiter, Netzsch) under a nitrogen atmosphere up to 800 °C 

with a heating rate of 5.0 °C min−1. Surface Areas were determined by BET 

measurements using an Autosorb-1 Surface Area Analyzers (Quanta chrome 

Instrument Corporation).

Calculation
The TOF value was determined based on the reported literature using the eq.(S1)
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  (S1)
𝑇𝑂𝐹 =

𝑃𝑎𝑡𝑚 𝑅𝑇

𝑛𝑃𝑡𝑡

where Patm is the atmospheric pressure (101325 Pa), VH2 is the volume of generated 

hydrogen when conversion rate of 50 %, Rrepresents the ideal gas constant (8.314 J 

mol−1·K−1), T is the reaction temperature (K), nPt is the total mole number of Pt atoms 

in catalyst, and t is the reaction time. 

The catalysts nearly show zero-order reaction kinetics with respect to ammonia 

borane in the reaction period. Therefore, the reaction rate law could be described as:

r =  k                   (S2)

where k is the reaction constant.

The KIE was determined on the basis of the reported literature using the eq.(S3)

KIE =  kH/ kD   (S3)

where kH is the reaction constant of the reaction in H2O, kD is the reaction constant of 

the reaction in D2O.



S3

Fig. S1. TGA analysis in air atmosphere for Na2CoEDTA.
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Fig. S2. XRD patterns of Pt@Co3O4, Co3O4/NC-e, and Pt@NC. 
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Fig. S3. (a) Nitrogen adsorption-desorption isotherms, and (b) pore size distributions 

of Co3O4/NC and Pt@Co3O4/NC.
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Fig. S4. (a,b) SEM images of Co3O4/NC. 
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Fig. S5. (a,b) SEM images of contrastive sample Pt@Co3O4.
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Fig. S6. High-resolution Co 2p (a) and O 1s (b) XPS scan of the pure Co3O4/NC and 
Pt@Co3O4/NC before and after the reuse test. 
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Fig. S7. (a) H2 generation vs time graph under different operating methods for AB 
hydrolysis at 298 K and (b) the corresponding TOF values of (a). 
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Fig. S8. (a) Time dependences of hydrogen production from hydrolytic 
dehydrogenation of AB at varied ultrasonication amplitudes and (b) the corresponding 
TOF values of (a). 
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Fig. S9. (a) H2 generation vs time graph over different catalysts for AB hydrolysis at 
298 K and (b) the corresponding TOF values of (a). 
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Fig. S10. (a) Effect of catalyst loadings on the catalytic activity of Pt@Co3O4/NC. (b) 
Corresponding TOF values of (a).
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Table S1. Comparison of catalytic activity, activation energy, and durability of Pt-

based catalysts during the AB hydrolysis.

Catalysts
TOF

(min-1)

Ea

(kJ·mol-1)

Recycling 

times

Retained 

activity 

(%)

Refs

.

Pt@SiO2 158.6 53.9 5 - [1]

Pt@MIL-101 414 40.7 - - [2]

Pt(8%)/CCF-500 35 39.2 5 47% [3]

Pt20/CNT 416.5 48.3 4 40% [4]

Pt/CNT-10W 558 29 5 68% [5]

Pt/C 111 - - - [6]

Pt/CNT-P 141.7 - 5 24% [7]

Pt-CeO2 133 - 5 66% [8]

Pt25@TiO2 311 - 3 75% [9]

Pt/CeO2/RGO 48 - 5 90% [10]

Pt/CNTs-O-HT 468 - - - [11]

Pd–Pt alloy 51.9 - 5 - [12]

PtNi@SiO2 20.7 54.76 5 73% [13]

Pt-CoCu@SiO2 272.8 51.01 6 - [14]

Pt0.65Ni0.35 44.3 39 - - [15]

SiO2@Pt@NGO 324.6 - 6 58% [16]

Pt-PVP/SiO2(M) 371 46.2 5 - [17]

Pt–Ru@PVP NPs 308 56.3 5 72% [18]

Pd–Pt@PVP NPs 125 51.7 5 61% [19]
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Co0.32Pt0.68/C 67 41.5 - - [20]

NP–Pt40Co60 131 38.8 5 65% [21]

PtRu 59.6 38.9 5 70% [22]

Pt58Ni33Au9 496 - 5 - [23]

Pt/graphene 107 - 5 81.2% [24]

Pt@PC-POPs 55 - 5 - [25]

Pt@CF-12 139 31 7 24% [26]

Pt@Co3O4/NC 2867 32.09 10 85%
This 

work
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