Metal-assisted synthesis of salen-based porous organic polymer for high efficient

fixation of CO₂ into cyclic carbonates

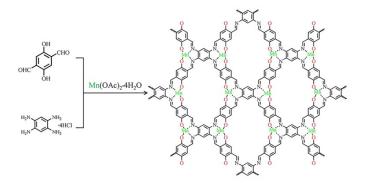
Gang Yuan, Yin Lei, Xianyu Meng, Bangdi Ge, Yu Ye, Xiaowei Song* and Zhiqiang

Liang*

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of

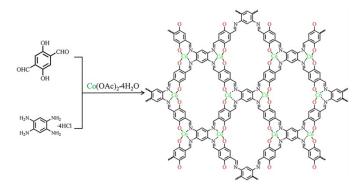
Chemistry, Jilin University, Changchun 130012, P. R. China

*Corresponding Authors.


E-mail addresses: xiaoweisong@jlu.edu.cn (X. Song); liangzq@jlu.edu.cn (Z. Liang).

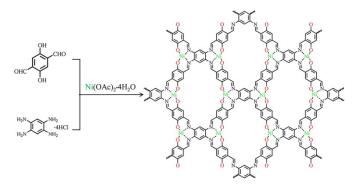
Materials and characterizations

All chemicals were obtained from commercial suppliers and used without further purification. Fourier transform infrared (FTIR) spectra were recorded in the range of 400-4000 cm⁻¹ on a Nicolet 6700 FT-IR spectrometer with KBr pellets. X-ray photoelectron spectroscopy (XPS) were performed using an ESCALAB 250 spectrometer with a monochromatic X-ray source (Al Ka hu=1486.6 eV). The X-ray diffraction (XRD) patterns were recorded using a Rigaku D/Max 2550 X-ray diffractometer (Cu Ka radiation, $\lambda = 1.5406$ Å). The content of metal in products were determined with inductively coupled plasma (ICP) analyses carried out on a Perkin-Elmer Optima 3300 DV ICP instrument. Elemental analyses (C, H, and N) were performed with a Vario MICRO (Elementar, Germany). Surface morphologies were characterized using a JSM-7800 F field emission scanning electron microscope (SEM) at an accelerating voltage of 3 kV. Transmission electron microscopy (TEM) were conducted on a FEI Tecnai G2S-Twin with a field emission gun operating at 200 kV. Thermal gravimetric analyses (TGA) were carried out on a TGA Q500 thermogravimetric analyzer in air atmosphere at a heating rate of 10 °C min⁻¹. The Micromeritics ASAP 2020 instrument was used to evaluate the adsorption properties of N₂, CO₂ with the samples degassed at 120 °C for 10 h before testing under high vacuum. Solution-state ¹H spectra were recorded on a Varian Mercury spectrometer operating at frequency of 300 MHz.

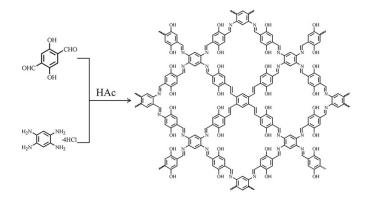

Experimental section

Synthesis of Mn-salen-POP

A mixture of mesitylene/1,4-dioxane (0.5 mL/1.5 mL), 1,2,4,5-benzenetetramine (BTA) (20)0.07 2,5-dihydroxy-1,4tetrahydrochloride mg, mmol), benzenedicarboxaldehyde (HBC) (27 mg, 0.14 mmol) and 0.28 mmol Mn(OAc)₂·4H₂O was degassed in a pyrex tube (5 mL) by three freeze-pump-thaw cycles. The tubes were sealed off and heated at 150 °C for 3 days. The resulting products were collected by filtration and washed with H_2O (3 × 20 mL), DMF (3 × 20 mL) and MeOH (3×20 mL), respectively. The sample was transferred to a Soxhlet extractor and washed with tetrahydrofuran (THF) (24 h) then dried at 80 °C under vacuum for 24 h to give black powders with 81% yields.


Synthesis of Co-salen-POP

A mixture of mesitylene/1,4-dioxane (0.5 mL/1.5 mL), BTA (20 mg, 0.07 mmol), HBC (27 mg, 0.14 mmol) and 0.28 mmol $Co(OAc)_2 \cdot 4H_2O$ was degassed in a pyrex tube (5 mL) by three freeze-pump-thaw cycles. The tubes were sealed off and heated at 150 °C for 3 days. The resulting products were collected by filtration and washed with H₂O (3 × 20 mL), DMF (3 × 20 mL) and MeOH (3 × 20 mL), respectively. The


sample was transferred to a Soxhlet extractor and washed with THF (24 h) then dried at 80 °C under vacuum for 24 h to give black powders with 84% yields.

Synthesis of Ni-salen-POP

A mixture of mesitylene/1,4-dioxane (0.5 mL/1.5 mL), BTA (20 mg, 0.07 mmol), HBC (27 mg, 0.14 mmol) and 0.28 mmol Ni(OAc)₂·4H₂O was degassed in a pyrex tube (5 mL) by three freeze-pump-thaw cycles. The tubes were sealed off and heated at 150 °C for 3 days. The resulting products were collected by filtration and washed with H₂O (3 × 20 mL), DMF (3 × 20 mL) and MeOH (3 × 20 mL), respectively. The sample was transferred to a Soxhlet extractor and washed with THF (24 h) then dried at 80 °C under vacuum for 24 h to give black powders with 87% yields.

Synthesis of salen-POP

A mesitylene/1,4-dioxane/6M HAc (0.5 mL/1.5 mL/0.2 mL) mixture of BTA (20 mg, 0.07 mmol), HBC (27 mg, 0.14 mmol) in a Pyrex tube (5 mL) was degassed by three freeze–pump–thaw cycles. The tube was sealed off and heated at 150 °C for 3 days. The formed black precipitate was collected by filtration and washed with H_2O

 $(3 \times 20 \text{ mL})$, DMF $(3 \times 20 \text{ mL})$ and MeOH $(3 \times 20 \text{ mL})$. salen-POP was further purified by soxhlet extraction with THF (24 h), then dried at 80 °C under vacuum for 24 h to give black powders.

Synthesis of salen-POP/Co

Salen-POP (100 mg) was dispersed in 6 mL ethanol and the mixture was added into the solution of $Co(OAc)_2 \cdot 4H_2O$ (100 mg, 0.4 mmol). The mixture was refluxed at 80 °C for 12 h. After filtration, the obtained material was fully washed with ethanol and then dried under vacuum at 60 °C for 12 h.

Experiment of CO₂ fixation under 0.1 MPa

For this reaction, styrene oxide (10 mmol), **Co-salen-POP** (30 mg, 0.82 mol%), TBAB (0.1 mmol, 1 mol%) were added into a 10 mL reaction tube. The reaction was carried out at 100 °C in the presence of carbon dioxide provided by the carbon dioxide cylinder. After a certain amount of time, the reaction was stopped. After dissolving a small portion of the product in DMSO- d_6 reagent and separating the catalyst through a Nylon filter membrane, the resulting clear solution was characterized by ¹H NMR. The yields were calculated according to the ¹H NMR spectra.

The detailed process of isolated yield calculation

Co-salen-POP (30 mg), phenyl glycidyl (10 mmol) and TBAB (0.1 mmol) were added into the reactor. After purging the reactor with CO_2 to remove air three times, the autoclave was pressurized to 1.0 MPa with CO_2 . The temperature was raised to 100 °C in 30 minutes and the reaction proceeded for 5 minutes with stirring at 300 rpm. In the end of reaction, the reactor was quickly cooled to room temperature in an ice water bath and the CO_2 pressure was released from the autoclave. After dissolving the mixture in ethyl acetate and filtering out the catalyst, the resulting solution was removed under reduced pressure to obtain the product. The isolated yield of corresponding cyclic carbonate of phenyl glycidyl ether was calculated by the formula: isolated yield = experimental yield (1.918 g) / theoretical yield (1.948 g).

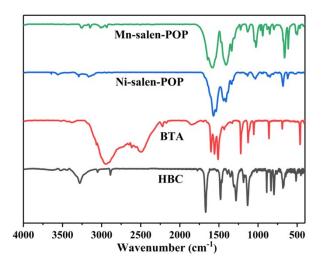


Fig. S1 FTIR spectra of Mn-salen-POP and Ni-salen-POP.

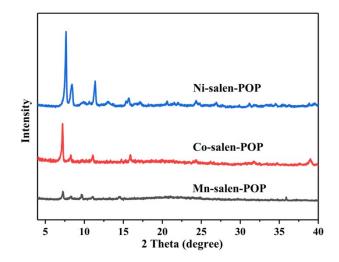


Fig. S2 Powder XRD patterns of Mn-salen-POP, Co-salen-POP and Ni-salen-POP.

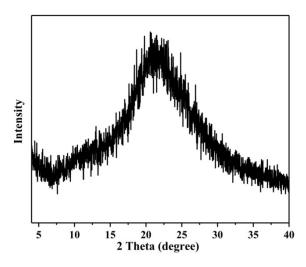


Fig. S3 Powder XRD pattern of salen-POP.

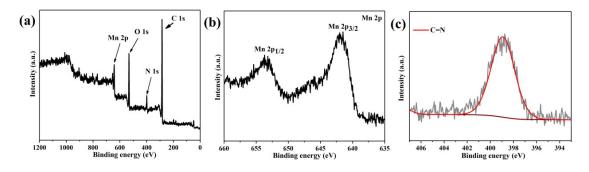


Fig. S4 (a) XPS survey spectra of Mn-salen-POP. (b) Mn 2p spectra of Mn-salen-POP. (c) N 1s spectra of Mn-salen-POP.

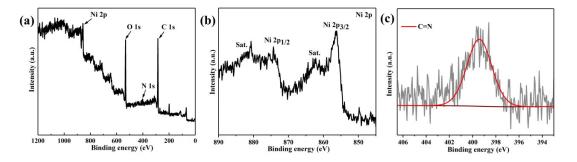
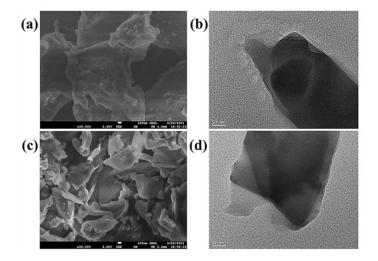



Fig. S5 (a) XPS survey spectra of Ni-salen-POP. (b) Ni 2p spectra of Ni-salen-POP.(c) N1s spectra of Ni-salen-POP.

M-Salen-POP	CHN Eler	nental Analy	Metal content		
	С	Н	Ν	(wt%)	
Mn-salen-POP	19.48	3.38	2.58	15.39	
Ni-salen-POP	23.24	3.43	2.77	17.29	
Co-salen-POP	17.73	3.10	3.53	16.13	
Co-salen-POP	17 62	2 1 2	2.51	16.06	
(after 5 cycles)	17.63	3.12	3.51	16.06	

Table S1 CHN elemental analysis and ICP results of metal for catalysts.

Fig. S6 (a, b) SEM and TEM images of **Mn-salen-POP**. (c, d) SEM and TEM images of **Ni-salen-POP**.

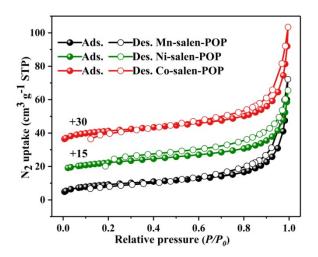


Fig. S7 N_2 adsorption-desorption isotherms of Mn-salen-POP, Ni-salen-POP and Co-salen-POP.

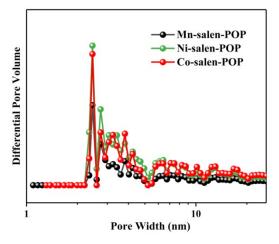


Fig. S8 Pore size distributions of Mn-salen-POP, Ni-salen-POP and Co-salen-POP.

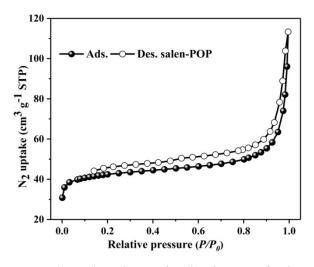


Fig. S9 N₂ adsorption-desorption isotherms of salen-POP.

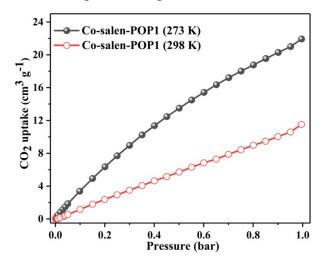
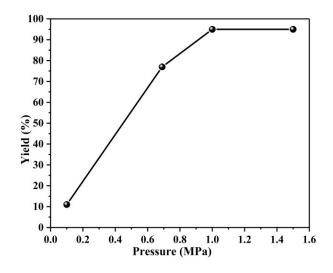



Fig. S10 Adsorption isotherms of CO₂ of Co-salen-POP at 273 and 298 K.

Fig. S11 Yields of styrene carbonate depending on reaction pressure under 100 °C for 30 min using **Co-salen-POP** (30 mg) as catalyst and TBAB (0.1mmol) as co-catalyst.

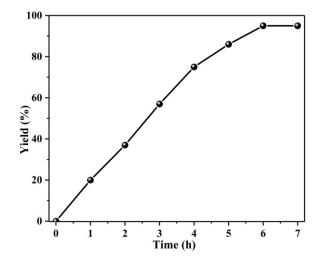


Fig. S12 Kinetic curve for the cycloaddition reactions of styrene epoxide and CO_2 catalyzed by Co-salen-POP (30 mg, 0.82 mol%) with the aid of TBAB (0.1 mmol, 1mol%) at 100 °C and 0.1 MPa CO_2 .

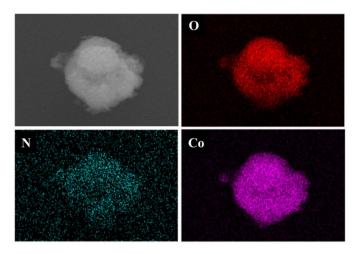


Fig. S13 SEM & EDS Mapping of Co-salen-POP after five catalysis.

Table S2 Comparison of the activity of Co-salen-POP in the PO cycloadditionreaction with the other salen-based POP catalysts.

Catalyst	Catalyst	Т	Pressure	TBAB	Time	Yield	Ref.
	(mol%)	(°C)	(MPa)	(mol%)	(h)	(%)	
Co-salen-POP	0.54	100	1	1	1/12	97	This work
COF-salen-Co	0.1	100	2	1	3	91	S1
Co-CMP-2	0.41	100	3	7.2	1	98.7	S2
Co-CMP	0.488	100	3	7.2	1	98.1	S3
Zn-CMP	0.1	120	3	1.8	1	74.8	S4
Zn@SBMMP	0.48	80	2	1.8	4	95	S5
Co-salen-TBB-Py	0.19	80	0.5	none	8	97.8	S6
BSPOP-Co	0.2	25	0.1	4	18	92	S7

Catalyst	Catalyst	Т	Pressure	TBAB	Time	Yield	Ref.
	(mol%)	(°C)	(MPa)	(mol%)	(h)	(%)	
PAF-ZnBr ₂	1.7	90	1	2	1	71	S8
Zn-TPAMP	0.011	100	2	6.5	1	99	S9
Al-HCP	0.25	40	1	2	1	99	S10
P-POF-Zn	0.1	120	3	0.5	2.5	95	S11
Al-iPOP-2	0.1	40	1	0.2	3	99	S12
Bp-POF-Cu	0.1	100	1	0.5	6	99	S13
Co-Phen-POP	0.025	25	1	7.2	48	83.6	S14
Zn/HAzo-POP1	0.062	100	3	7.2	0.5	90	S15
Zn@ah-PMF	0.0085	100	2	0.6	0.5	79	S16
IL-MIL-101-NH ₂	0.88	120	1.3	none	1	91	S17
CPP-IL _{0.05}	1.0	100	0.1	none	24	96	S18

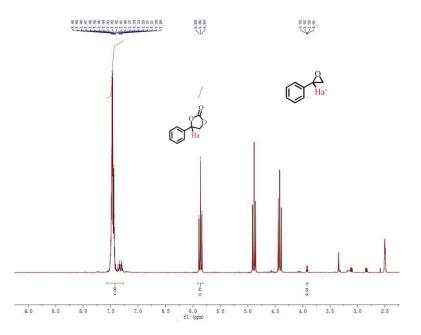
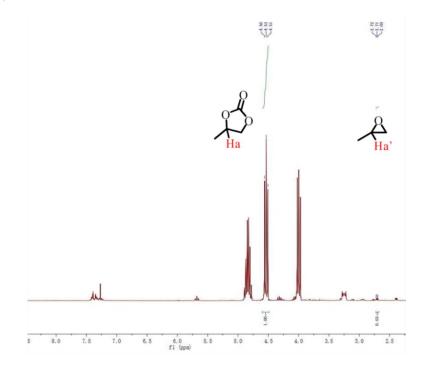
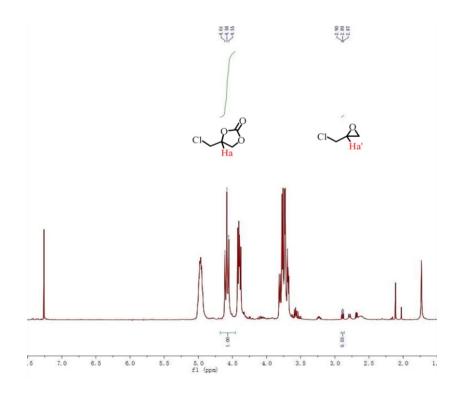
 Table S3 Comparison of the activity of Co-salen-POP in the PO cycloaddition

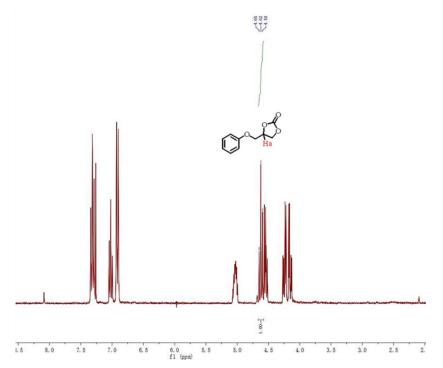
 reaction with the reported metalated porous organic polymers and MOFs.

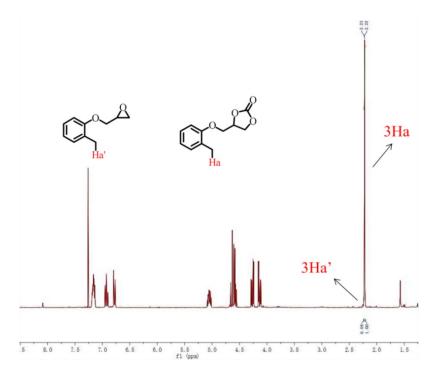
The detailed process of yield calculation by solution-state ¹H NMR.

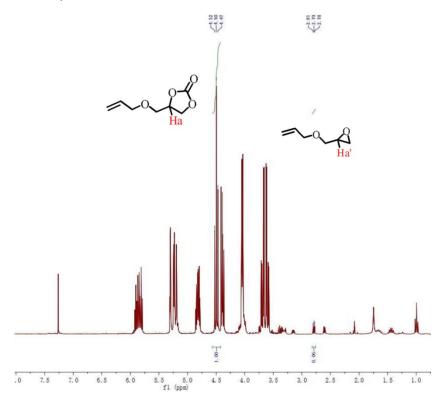
The yields of propylene oxide, epichlorohydrin, styrene oxide, allyl glycidyl ether, phenyl glycidyl ether, *o*-tolyl glycidyl ether and cyclohexene oxide to corresponding cyclic carbonates catalyzing by **Co-salen-POP** were calculated according to the following equation. As all of the epoxides and cyclic carbonates are known compounds, the characteristic peaks were pointed out according to reference.

Yield(%) =
$$\frac{I_{H_{a'}}}{I_{H_a} + I_{H_{a'}}} \times 100\%$$


Fig. S14 Solution-state ¹H NMR of the crude products in the cycloaddition reaction catalyzed by the Co-salen-POP catalyst with styrene epoxide as substrate (DMSO- d_6 as solvent).


Fig. S15 Solution-state ¹H NMR of the crude products in the cycloaddition reaction catalyzed by the **Co-salen-POP** catalyst with propylene oxide as substrate (CDCl₃ as solvent).


Fig. S16 Solution-state ¹H NMR of the crude products in the cycloaddition reaction catalyzed by the **Co-salen-POP** catalyst with epichlorohydrin as substrate (CDCl₃ as solvent).

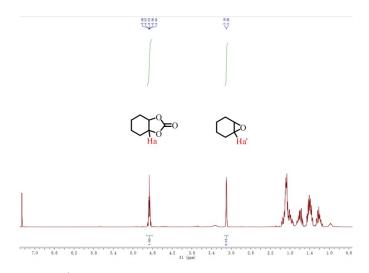

Fig. S17 Solution-state ¹H NMR of the crude products in the cycloaddition reaction catalyzed by the **Co-salen-POP** catalyst with phenyl glycidyl ether as substrate (CDCl₃ as solvent).

Fig. S18 Solution-state ¹H NMR of the crude products in the cycloaddition reaction catalyzed by the **Co-salen-POP** catalyst with *o*-tolyl glycidyl ether as substrate (CDCl₃ as solvent).

Fig. S19 Solution-state ¹H NMR of the crude products in the cycloaddition reaction catalyzed by the **Co-salen-POP** catalyst with allyl glycidyl ether as substrate (CDCl₃ as solvent).

Fig. S20 Solution-state ¹H NMR of the crude products in the cycloaddition reaction catalyzed by the **Co-salen-POP** catalyst with cyclohexene oxide as substrate (CDCl₃ as solvent).

\mathcal{O}			
Reagent	Manufacturer	Purity (%)	
TBAB	Tianjin guangfu fine chemical	99	
IBAB	research institute		
Styrene epoxide	Aladdin	≥95	
Propylene oxide	Aladdin	≥99.5	
D 1 1 1	Tianjin fuchen chemical reagent	98	
Epichlorohydrin	factory		
Allyl glycidyl ether	Aladdin	99	
Phenyl glycidyl ether	Macklin	>98	
2-methylphenyl glycidyl	41 11	0.5	
ether	Aladdin	95	
	Tianjin fuyu fine chemical	00	
Ethyl acetate	company limited	99	
DMSO- d_6	Aldrich	99.9	
CDCl ₃	Aladdin	99	
1 4 1	Tianjin fuyu fine chemical	99.5	
1,4-dioxane	company limited		

mesitylene	Macklin	97	
1,2,4,5-benzenetetramine	7hau-have Alfa abamical assurements	95	
tetrahydrochloride	Zhenzhou Alfa chemical company	95	
2,5-dihydroxy-1,4-	7hau-have Alfa abamical assurements	06	
benzenedicarboxaldehyde	Zhenzhou Alfa chemical company	96	
	China National Pharmaceutical	99.5	
$Co(OAc)_2 \cdot 4H_2O$	Group Corporation		
	China National Pharmaceutical	00.5	
$Mn(OAc)_2 \cdot 4H_2O$	Group Corporation	99.5	
	China National Pharmaceutical	00.5	
$Ni(OAc)_2 \cdot 4H_2O$	Group Corporation	99.5	

References

S1. H. Li, X. Feng, P. Shao, J. Chen, C. Li, S. Jayakumar and Q. Yang, Synthesis of covalent organic frameworks via in situ salen skeleton formation for catalytic applications, *J. Mater. Chem. A*, 2019, **7**, 5482–5492.

S2. J. Xiong, R.-X. Yang, Y. Xie, N.-Y. Huang, K. Zou and W.-Q. Deng, Formation of cyclic carbonates from CO₂ and epoxides catalyzed by a cobalt-coordinated conjugated microporous polymer, *ChemCatChem*, 2017, **9**, 2584–2587.

S3. Y. Xie, T.-T. Wang, X.-H. Liu, K. Zou and W.-Q. Deng, Capture and conversion of CO₂ at ambient conditions by a conjugated microporous polymer, *Nat. Commun.*, 2013, 4, 1960.

S4. Y. Xie, T.-T. Wang, R.-X. Yang, N.-Y. Huang, K. Zou and W.-Q. Deng, Efficient fixation of CO₂ by a Zinc-coordinated conjugated microporous polymer, *ChemSusChem*, 2014, 7, 2110–2114.

S5. S. Bhunia, R. A. Molla, V. Kumari, S. M. Islam and A. Bhaumik, Zn(II) assisted synthesis of porous salen as an efficient heterogeneous ccaffold for capture and conversion of CO₂, *Chem. Commun.*, 2015, **51**, 15732–15735.

S6. C. Zhang, D. Lu, Y. Leng and P. Jiang, Metal-salen-bridged ionic networks as efficient bifunctional solid catalysts for chemical fixation of CO₂ into cyclic

carbonates, Mol. Catal., 2017, 439, 193-199.

S7. Y. Zheng, X. Wang, C. Liu, B. Yu, W. Li, H. Wang, T. Sun and J. Jiang, Triptycene-supported bimetallic salen porous organic polymers for high efficiency CO₂ fixation to cyclic carbonates, *Inorg. Chem. Front.*, 2021, **8**, 2880–2888.

S8. J. Wang and Y. Zhang, Facile synthesis of N-rich porous azo-linked frameworks for selective CO₂ capture and conversion, *Green Chem.*, 2016, **18**, 5248–5253.

S9. F. Tang, J. Hou, K. Liang, J. Huang and Y.-N. Liu, Melamine-based metalchelating porous organic polymers for efficient CO₂ capture and conversion, *Eur. J. Inorg. Chem.*, 2018, **2018**, 4175–4180.

S10. Y. Chen, R. Luo, Q. Xu, W. Zhang, X. Zhou and H. Ji, State-of-the-art aluminum porphyrin-based heterogeneous catalysts for the chemical fixation of CO_2 into cyclic carbonates at ambient conditions, *ChemCatChem*, 2017, **9**, 767–773.

S11. J. Chen, M. Zhong, L. Tao, L. Liu, S. Jayakumar, C. Li, H. Li and Q. Yang, The cooperation of porphyrin-based porous polymer and thermal-responsive ionic liquid for efficient CO₂ cycloaddition reaction, *Green Chem.*, 2018, **20**, 903–911.

S12. Y. Chen, R. Luo, Q. Xu, J. Jiang, X. Zhou and H. Ji, Charged metalloporphyrin polymers for cooperative synthesis of cyclic carbonates from CO₂ under ambient conditions, *ChemSusChem*, 2017, **10**, 2534–2541.

S13. J. Chen, P. Zhao, D. Li, L. Liu and H. Li, Achieving the transformation of captured CO_2 to cyclic carbonates catalyzed by a bipyridine copper complexintercalated porous organic framework, *Ind. Eng. Chem. Res.*, 2020, **59**, 9423–9431.

S14. X. Zhang, J. Ding, B. Qiu, D. Li, Y. Bian, D. Zhu, S. Wang, W. Mai, S. Ming, J. Chen and T. Li, Ultralow Co loading phenanthroline-based porous organic polymer as a high-efficient heterogeneous catalyst for the fixation of CO₂ to cyclic carbonates at ambient conditions, *ChemCatChem*, 2021, **13**, 2664–2673.

S15. G. P. Ji, Z. Z. Yang, H. Y. Zhang, Y. F. Zhao, B. Yu, Z. S. Ma and Z. M. Liu, Hierarchically mesoporous o-hydroxyazobenzene polymers: synthesis and their applications in CO₂ capture and conversion, *Angew. Chem., Int. Ed.*, 2016, **55**, 9685–9689.

S16. J. Yin, T. Zhang, E. Schulman, D. Liu and J. Meng, Hierarchical porous 18/19

metallized poly-melamine-formaldehyde (PMF) as a low-cost and high-efficiency catalyst for cyclic carbonate synthesis from CO2 and epoxides, *J. Mater. Chem. A*, 2018, **6**, 8441–8448.

S17. T. Wang, X. Song, Q. Luo, X. Yang, S. Chong, J. Zhang and M. Ji, Acidbase bifunctional catalyst: carboxyl ionic liquid immobilized on MIL-101-NH₂ for rapid synthesis of propylene carbonate from CO_2 and propylene oxide under facile solvent-free conditions, *Micropor. Mesopor. Mater.*, 2018, **267**, 84–92.

S18. C. Cui, R. Sa, Z. Hong, H. Zhong and R. Wang, Ionic-liquid-modified clickbased porous organic polymers for controlling capture and catalytic conversion of CO₂, *ChemSusChem*, 2020, **13**, 180–187.