Supporting Information

Synergistic effect between 1D Co₃S₄/MoS₂ heterostructures to boost

the performance for alkaline overall water splitting

Zilong Li^{*a*}, Weilong Xu^{*a*}, Xiaolong Yu^{*b*}, Sanxi Yang ^{*a*}, Yang Zhou *, ^{*a*}, Kai Zhou ^{*c*}, *Qikai*, Wu^{*d*}, Shunlian Ning ^{*d*}, Mi Luo ^{*d*}, Dengke Zhao *, ^{*d*} and Nan Wang *, ^{*a*}

Z. L. Li, W.L. Xu, S. X. Yang, Y. Zhou, and N. Wang College of Science and Engineering, Jinan University, Guangzhou 510632, China E-mail: nanwang@jnu.edu.cn

X. L. Yu

Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China

K. Zhou

Center for Advanced Analytical Science, c/o School of Chemistry and Chemical Engineering Guangzhou University Guangzhou 510006, P.R. China.

Q. K. Wu, S. L. Ning, M. Luo and D. K. Zhao New Energy Research Institute, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China

* The Corresponding authors:

E-mail: yangzhou@email.jnu.edu.cn (Yang Zhou), scutezhao@sina.com (Dekeng Zhao), nanwang@jnu.edu.cn (Nan Wang)

List of Contents

• 14 figures and 1 table

Figure S1. XRD pattern of MoO₃.

Figure S2. (a, c) TEM images of MoS_2 NR and Co_3S_4 . (b, d) the corresponding HRTEM images of MoS_2 NR and Co_3S_4 .

Figure S3. The TEM-EDS spectrum of Co_3S_4/MoS_2 NR.

Figure S4. (a, c, e) Nitrogen adsorption-desorption isotherms of as-made samples. (b,

d, f) the corresponding pore-size distribution plots of as-made samples.

Figure S5. (a, b, c) CV measurements with different scan rates (40, 80, 120, 160 and 200 mV s⁻¹) at different potential ranges (0.00-0.10 V vs. RHE) in 1 M KOH solution.

Figure S6. The LSV normalized by ECSA of different samples

Figure S7. (a, b) The TEM and HRTEM images of Co_3S_4/MoS_2 NR after long-time HER test.

Figure S8. (a, b, c) The S 2p, Mo 3d and Co 2p of Co_3S_4/MoS_2 NR after long-time HER test.

Figure S9. Scheme of Co_3S_4 (111), MoS_2 (002) and Co_3S_4/MoS_2 heterostructure with

 $\mathrm{H_{2}O}\left(a\right)$ and $\mathrm{OH}\left(b\right)$ adsorbed on the respective surface.

Figure S10. DFT-calculated H_2O free-energy change of Co_3S_4 (111), MoS_2 (002) and

 Co_3S_4/CoS_2 heterostructure.

Figure S11. XRD pattern of Co_3S_4/MoS_2 NR before and after HER and OER test.

Figure S12. (a, b) The TEM and HRTEM images of $\text{Co}_3\text{S}_4/\text{MoS}_2$ NR after long-time

OER test.

Figure S13. (a, b, c) The S 2p, Mo 3d and Co 2p of Co₃S₄/MoS₂ NR after long-time

OER test.

Figure S14. The galvanostatic discharge curves of a r-ZAB loaded with $\text{Co}_3\text{S}_4/\text{MoS}_2$

NR catalysts on air cathode

Electrocatalyst	Catalytic performance		Reference
	Overpotential (j ₁₀) of HER (mV)	Overpotential (j ₁₀) of OER (mV)	information
Co ₃ S ₄ /MoS ₂ NR	116	280	This work
Co@Co-P@NPCNTs	160	290	Ref.44 (2020)
FeOOH/Ni ₃ N	67	244	Ref.45 (2020)
Co ₄ N@NC	62	257	Ref.46 (2020)
VOOH-3Fe	90	195	Ref.47 (2020)
CoFeO@BP	88	266	Ref.48 (2020)
Co/CoP@HOMC	120	260	Ref.49 (2021)
WN-Ni@N,P-CNT	70	268	Ref.50 (2021)
Ni-Mo-P	69	235	Ref.51 (2021)
MoS ₂ /NiFe-LDH	110	210	Ref.52 (2019)
Co-Ni ₃ N	194	307	Ref.53 (2018)
NiFe-MOF-5	163	168	Ref.54 (2021)
Co ₉ S ₈ @Co ₉ S ₈ @MoS _{2-x}	173	340	Ref.55 (2019)
Co@N-CNTF	220	350	Ref.56 (2019)
FeS ₂ @MXene	87	240	Ref.57 (2022)
Ni-Co sulfide/NF	190	230	Ref.58 (2021)

Table S1. Comparison of the electrochemical HER and OER performance of Co_3S_4/MoS_2 NR with some leading non-precious bifunctional electrocatalysts.