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Experimental Section:

The equations for calculating the quenching effect and LOD -

I 1
%=1+KSV><[C] D
LOD =3¢ /Ky, (2)

Where [, and [ are on behalf of the fluorescent intensities of JLUE-MOG-9 in the
absence and existence of CTC with various concentrations, respectively; Ksy denotes
the Stern—Volmer quenching constant; C is the CTC concentration in solution; LOD
represents the detection limit, and o is the standard derivation of the blank sample (10

times).

The equation for calculating the CTC concentration from R, G and B values :

R G, B
Ge's)
CR=% 3)

Where the R;, G, and B, represented the R, G and B values of samples; R,, G, and B,

were on behalf of the R, G and B values of blank solution.

The summary of utilized models in manuscript :

Adsorption kinetic models Equations
Pseudo-first kinetic model In (‘]e -4, )= Ing, - kl t
o t 1 t
Pseudo-second kinetic model —= >t —
4 kg q.
Intra-particle diffusion model q, =k t% +C

Where g. and g; are on behalf of the adsorbed amounts of CTC at equilibrium
stage and time ¢ (mg-g!), respectively; k1, k, and k; denote the pseudo-first-order
kinetic model rate constant (h™!), the pseudo-second-order kinetic model rate
constant (g'mg~!-h™1) and the intra-particle diffusion model rate constant (mg-g'-h~

12), respectively; C is the intercept (mg-g™!).



Adsorption Isotherm models Equations

1
Freundlich Ing, =InK; + - InC,
L . g _ L N a,C,
angmuir A
Temkin g.=BInK,+BInC,

Where ¢, represents the same meaning as above; C, is the equilibrium concentration of
CTC in solution (mg-L™"); K and ap are the Langmuir isotherm constants; K is the
Freundlich isotherm constant; Kt is the Temkin constant (L-mg™"); B is related to the

heat of adsorption (J-mol™); 1/n is a heterogeneity factor.
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Fig. S1. The SEM results of (a) JLUE-MOG-9 and (b) JLUE-MOG-11. The TEM

results of (¢) JLUE-MOG-9 and (d) JLUE-MOG-11.
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Fig. S2. The XRD patterns of the JLUE-MOG:s.
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Fig. S3. The TGA curves of JLUE-MOG-9 and JLUE-MOG-11.
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Fig. S4. The BET results of (a) JLUE-MOG-9 and (b) JLUE-MOG-11, insert: the pore
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Fig. S5. The XPS spectra of JLUE-MOG-9: (a) Survey spectrum. (b) High-solution

spectrum of C 1s. (¢) High-solution spectrum of N 1s. (d) High-solution spectrum of O

Is. (e) High-solution spectrum of Fe 2p. (f) High-solution spectrum of Tb 3d. (g) High-

solution spectrum of Tb 4d.
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Fig. S6. The XPS spectra of JLUE-MOG-10: (a) High-solution spectrum of C 1s. (b)

High-solution spectrum of N 1s. (¢) High-solution spectrum of O 1s.
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Fig. S7. The XPS spectra of JLUE-MOG-11: (a) Survey spectrum. (b) High-solution
spectrum of C 1s. (¢) High-solution spectrum of N 1s. (d) High-solution spectrum of O

Is. (e) High-solution spectrum of Fe 2p. (f) High-solution spectrum of Tb 3d. (g) High-

solution spectrum of Tb 4d.
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Fig. S8. (a) Adsorptive removal and (b) corresponding pseudo-first-order kinetic

model, (¢) pseudo-second-order kinetic model and (d) intra-particle diffusion model

fittings for the CTC adsorption by JLUE-MOG-9.
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Fig. S10. (a) Adsorptive removal and (b) corresponding pseudo-first-order kinetic
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Fig. S13. The XRD spectra of JLUE-MOG-10 and regenerated JLUE-MOG-10.
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(b)

Fig. S20. The SEM results of (a) blank paper and (b) JLUE-MOG-9@paper.
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Fig. S21. The XPS spectra of JLUE-MOG-9@paper: (a) The survey spectrum. (b)
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Fig. S22. The XPS spectra of blank paper: (a) The survey spectrum. (b) High-solution
spectrum of C 1s. (¢) High-solution spectrum of N 1s. (d) High-solution spectrum of O
1s. (e) High-solution spectrum of Fe 2p. (f) High-solution spectrum of Tb 3d. (g) High-

solution spectrum of Tb 4d.
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Fig. S23. The XRD spectra of JLUE-MOG-9 and JLUE-MOG-9@paper.
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9@paper and various CTC concentrations in (a) distilled water, (b) tap water and (c)
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Tables

Table S1. Pseudo-first-order kinetic model parameters for CTC adsorption by JLUE-
MOG-9, JLUE-MOG-10 and JLUE-MOG-11.

Pseudo-first-order kinetics

Removal
CO e exp Aql
JLUE-MOGs Efficiency ( ki el theor
(mg-'L") (mg-g™) (% R
%) (™)  (mg-gh)
20 19.57 97.32 6.98 11.42 71.39 0.97
JLUE-MOG-9 50 49.11 98.22 0.22 14.00 250.68 0.78
100 97.75 97.75 0.04 45.54 114.63 0.94
20 19.31 96.82 11.66 7.70 150.74 0.92
JLUE-MOG-10 50 49.21 98.42 0.87 11.79 31746 0.86
100 98.91 98.71 0.15 3296  200.12 0.86
20 19.21 95.30 12.86 6.38 201.26 0091
JLUE-MOG-11 50 49.16 98.32 2.20 20.66 137.90 0.95

100 99.11 99.11 0.48 45.65 117.12 094
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Table S2. Pseudo-second-order kinetic model parameters for CTC adsorption by

JLUE-MOG-9, JLUE-MOG-10 and JLUE-MOG-11.

Pseudo-second-order kinetics

Removal
C0 qe,exp qu
JLUE-MOGsS Efficiency k, qe2 theor
(mg'L") (mgg’) (% R?
(%) (gmg'h') (mggh
20 19.57 97.32 2.45 20.02 2.27 0.99
JLUE-MOG-9 50 49.11 98.22 0.10 49.31 0.40 0.99
100 97.75 97.75 0.01 97.28 0.49 0.99
20 19.31 96.82 7.45 19.54 1.15 0.99
JLUE-MOG-10 50 49.21 98.42 0.29 49.63 0.84 0.99
100 98.91 98.71 0.03 99.11 0.20 0.99
20 19.21 95.30 11.25 19.37 0.82 0.99
JLUE-MOG-11 50 49.16 98.32 0.34 50.18 2.02 0.99
100 99.11 99.11 0.04 100.20 1.09 0.99
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Table S3. Intra-particle diffusion model parameters for CTC adsorption by JLUE-

MOG-9, JLUE-MOG-10 and JLUE-MOG-11.

Intra-particle diffusion model

Parameters
JLUE-MOG-9 JLUE-MOG-10 JLUE-MOG-11
Co
20 50 100 20 50 100 20 50 100
(mg-L™)
ki,
51.94 47.04 54.62 62.44 7243  96.03 64.76 85.08 91.75
(mg.g—l.h—1/2)
C
0.52 4.84 948 0.95 4.00 7.48 1.10 2.29 7.63
(mg-g™)
R? 0.97 0.94 0.92 0.94 0.93 0.93 0.93 0.96 0.95
ki,2
13.64 9.64 6.50 8.04 13.59 22.19 5.58 27.25 25.37
(mg.g—l.h—l/Z)
G
10.88 29.95 51.55 15.13 32.23 4955 16.35 2423 4944
(mg-g™t)
R? 0.99 0.96 0.94 0.94 0.95 0.95 0.96 0.97 0.96
ki,S
2.45 0.84 1.36 0.67 0.85 2.13 0.78 2.59 1.79
(mg.g—l.h—1/2)
G
17.37 44.72 81.02 18.79 4695 8579 18.66 4498 91.62
(mg-g™)
R? 0.95 0.89 0.97 0.81 0.73 0.89 0.99 0.84 0.74
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Table S4. Freundlich, Langmuir and Temkin adsorption isotherm model parameters for

CTC adsorption by JLUE-MOG-9, JLUE-MOG-10 and JLUE-MOG-11 at 25 °C.

Freundlich Langmuir Temkin
isotherm isotherm isotherm
JLUE-MOGs
qm KT B
n KF R? KL R? R?
(mg-g) (L'mg") (J-mol™)

JLUE-MOG-9 2.54 3981 098 91247 323 091 0.089 131.84  0.87

JLUE-MOG-10 2.97 13259 097 1518.74 18.13 0.96  0.90 168.61 0.86

JLUE-MOG-11 2.56 168.64 093 1520.82 74.13 099 1.11 23743 098
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Table S5. The water quality parameters of distilled water, tap water and river water.

COD TN TP NO;-N NH,*-N SS

(mgL- (mgLl') (mgl  (mgL') (mgL') (mgL-

D) D) D)
Distilled Water  n.d. 0.50 0.04 n.d. n.d. n.d.
Tap Water n.d. 6.45 0.01 n.d. 0.05 n.d.
River Water 24.00 16.24 0.13 5.83 0.10 1.00

3 n.d. means not detected
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Table S6. Cost estimation for the production of typical JLUE-MOG-10 per unit weight.

Used amount/ Unit Price Total Price
Cost Materials

Duration (RMB) (RMB)

Fe(NO3);-9H,0 0.1050 g 0.02 per gram 0.0021

Raw Tb(NO;);-6H,0O 0.1179 g 0.010 per gram 0.0012
materials TATB 0.1576 g 0.07 per gram 0.011
Ethanol 1 mL 5.0 per liter 0.005

DMSO SmL 11.5 per liter 0.058

Net amount 0.25 per gram
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Table S7. FCCD experimental design and related CTC removal efficiencies by JLUE-

MOG-10.
Initial CTC JLUE-MOG CTC Removal
Initial
Run Concentration Dosage Efficiency

- (mg L) (g'L™ (%0)
1 2.0 125 1.00 44.50
2 10.0 50 0.50 72.17
3 2.0 50 1.50 66.04
4 6.0 125 1.00 91.01
5 6.0 125 1.50 93.63
6 10.0 200 1.50 93.12
7 6.0 50 1.00 97.20
8 6.0 125 1.00 92.02
9 10.0 125 1.00 76.27
10 6.0 125 1.00 92.02
11 10.0 50 1.50 92.97
12 6.0 200 1.00 91.85
13 6.0 125 1.00 94.68
14 2.0 50 0.50 56.00
15 6.0 125 1.00 90.84
16 2.0 200 0.50 41.65
17 6.0 125 1.00 92.82
18 2.0 200 1.50 47.54
19 10.0 200 0.50 75.24
20 6.0 125 0.50 81.83

37



Table S8. ANOVA for the optimized FCCD model.

Sum of Mean F P-value
Source df
Squares Square Value Prob>F
Model 6456.55 9 717.39  126.85 < 0.0001 significant

A-Initial pH 2372.84 1 2372.84 419.58  <0.0001

B-Initial CTC 122.39

—_—

12239  21.64 0.0009

Concentration
C-JLUE-MOG  440.82 1 44082 7795 <0.0001
Dosage
AB 162.64 1 162.64  28.76 0.0003
AC 64.68 1 64.68 11.44 0.0070
BC 6.27 1 6.27 1.11 0.3172
A? 2193.71 1 2193.71 38791  <0.0001
B? 95.70 1 95.70 16.92 0.0021
c? 2.20 1 2.20 0.39 0.5464
Residual 56.55 10 5.66
Lack of Fit 46.67 5 9.33 4.72 0.0568 not
significant
Pure Error 9.88 5 1.98

Cor Total 6513.11 19

Std. Dev. 2.38 R? 0.9913
Mean 79.17 Rag? 0.9835
CV.% 3.00 Rped® 0.9656

PRESS 224.28 Adeq Precision 35.06
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Table S9. FCCD design validation at optimized conditions.

Removal Removal
CTC JLUE-MOG
efficiency efficiency
Number pH Concentration Dosage
(Predicted) (Actual)
(mg-LY (g'Lh
(%) (%)
1 6.0 50 1.00 100 96.96
2 7.1 61 1.02 100 96.60
3 7.1 51 0.89 99 93.90
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Table S10. Comparison of CTC detection limit by various sensors.

Sensor Analyte  Detection limit  References
Metal—organic coordination
CTC 19 nM 64
polymer(Zn(bix))

CdTe QDs@ZIF-8 composite CTC 37 nM 65
TSA/BSA-Au/AgNCs probe CTC 64 nM 66
IL1-SMIP/MWCNT-IL/GCE CTC 80 nM 67
JLUE-MOG-7 CTC 520 nM 33
FHBA@ZIF-8@Eu-GMP TC 60 nM 68
[Cd(L)(chdc)-(H,O)]n TC 76 nM 69
carbon dots TC 170 nM 70

JLUE-MOG-9 CTC 79 nM This work
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Table S11. The recoveries of CTC in distilled water by the measurements of JLUE-

MOG-9 based on a smartphone.

Spiked Concentration Found Recovery RSD
(mg-L) (mg-L) (%) (“0)

15 14.12 94.11 1.22

25 30.78 123.13 2.44

35 35.78 102.24 1.23
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Table S12. The recoveries of CTC in distilled water, tap water and river water by the

measurements of JLUE-MOG-9@paper based on a smartphone.

Spiked Distilled Water Tap Water River Water

concentration Found Recovery RSD Found Recovery RSD Found Recovery RSD

(mgL?) (mgL") (%4) (%) (mgL?) (%) () mgLh) (%) (%)

15 16.13 107.52 5.88 1549 103.26 3.72 13.67 91.11 4.89
25 27.43 109.71 8.42 27.16 108.65 10.22 26.96 107.85 10.94

35 38.24 109.26 6.39 3584 10239 449 36.27 103.62 7.51
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