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Experimental Section:

The equations for calculating the quenching effect and LOD：

(1)

(2)

Where I0 and I are on behalf of the fluorescent intensities of JLUE-MOG-9 in the 

absence and existence of CTC with various concentrations, respectively; KSV denotes 

the Stern–Volmer quenching constant; C is the CTC concentration in solution; LOD 

represents the detection limit, and σ is the standard derivation of the blank sample (10 

times).

The equation for calculating the CTC concentration from R, G and B values：

                                                        (3)
( )

3

s s s

r r r

R G B
R G BCR
 



Where the Rs, Gs and Bs represented the R, G and B values of samples; Rr, Gr and Br 

were on behalf of the R, G and B values of blank solution. 

The summary of utilized models in manuscript：

Adsorption kinetic models Equations

Pseudo-first kinetic model

Pseudo-second kinetic model

Intra-particle diffusion model

Where qe and qt are on behalf of the adsorbed amounts of CTC at equilibrium 

stage and time t (mg·g–1), respectively; k1, k2 and ki denote the pseudo-first-order 

kinetic model rate constant (h–1), the pseudo-second-order kinetic model rate 

constant (g·mg–1·h–1) and the intra-particle diffusion model rate constant (mg·g–1·h–

1/2), respectively; C is the intercept (mg·g–1).

 
1e t eln lnq q q k t  

2
t 2 e e

1 t
q k q q
t
 

1
2

t iq k t C 

0
SV1 [ ]KI CI   

SV3 /LOD K
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Adsorption Isotherm models Equations

Freundlich

Langmuir 

Temkin

Where qe represents the same meaning as above; Ce is the equilibrium concentration of 

CTC in solution (mg·L–1); KL and aL are the Langmuir isotherm constants; KF is the 

Freundlich isotherm constant; KT is the Temkin constant (L·mg–1); B is related to the 

heat of adsorption (J·mol–1); 1/n is a heterogeneity factor.

e F e
1ln ln lnq K C
n

 

e L e

e L L

1C a C
q K K

 

e T eln lnq B K B C 
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Figures
(a)

(c) (d)

(b)

100 nm

JLUE-MOG-9

100 nm

JLUE-MOG-11

500 nm

JLUE-MOG-11

500 nm

JLUE-MOG-9

Fig. S1. The SEM results of (a) JLUE-MOG-9 and (b) JLUE-MOG-11. The TEM 

results of (c) JLUE-MOG-9 and (d) JLUE-MOG-11.
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Fig. S2. The XRD patterns of the JLUE-MOGs.
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Fig. S3. The TGA curves of JLUE-MOG-9 and JLUE-MOG-11.
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Fig. S4. The BET results of (a) JLUE-MOG-9 and (b) JLUE-MOG-11, insert: the pore 

size distributions of (a) JLUE-MOG-9 and (b) JLUE-MOG-11.
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Fig. S5. The XPS spectra of JLUE-MOG-9: (a) Survey spectrum. (b) High-solution 

spectrum of C 1s. (c) High-solution spectrum of N 1s. (d) High-solution spectrum of O 

1s. (e) High-solution spectrum of Fe 2p. (f) High-solution spectrum of Tb 3d. (g) High-

solution spectrum of Tb 4d.
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Fig. S6. The XPS spectra of JLUE-MOG-10: (a) High-solution spectrum of C 1s. (b) 

High-solution spectrum of N 1s. (c) High-solution spectrum of O 1s.
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Fig. S7. The XPS spectra of JLUE-MOG-11: (a) Survey spectrum. (b) High-solution 

spectrum of C 1s. (c) High-solution spectrum of N 1s. (d) High-solution spectrum of O 

1s. (e) High-solution spectrum of Fe 2p. (f) High-solution spectrum of Tb 3d. (g) High-

solution spectrum of Tb 4d.
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Fig. S8. (a) Adsorptive removal and (b) corresponding pseudo-first-order kinetic 

model, (c) pseudo-second-order kinetic model and (d) intra-particle diffusion model 

fittings for the CTC adsorption by JLUE-MOG-9.
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Fig. S9. (a) Pseudo-first-order kinetic model, (b)pseudo-second-order kinetic model 

and (c) intra-particle diffusion model fittings for the CTC adsorption by JLUE-MOG-

10.
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Fig. S10. (a) Adsorptive removal and (b) corresponding pseudo-first-order kinetic 

model, (c) pseudo-second-order kinetic model and (d) intra-particle diffusion model 

fittings for the CTC adsorption by JLUE-MOG-11.
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weight adsorbents (qe) of (a) JLUE-MOG-9 and (b) JLUE-MOG-11 as a function of 

adsorbent dosage.
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Fig. S13. The XRD spectra of JLUE-MOG-10 and regenerated JLUE-MOG-10.
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Fig. S14. The contact angles of JLUE-MOGs in distilled water.
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Fig. S15. The XPS spectra of CTC@JLUE-MOG-10: (a) Survey spectrum. (b) High-

solution spectrum of C 1s. (c) High-solution spectrum of N 1s. (d) High-solution 

spectrum of O 1s. (e) High-solution spectrum of Fe 2p. (f) High-solution spectrum of 
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Fig. S16. The actual results plotted against the predicted responses derived from the 

FCCD model of CTC removal.
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Fig. S17. 3D surface plots and corresponding contour plots for interactions between 

initial pH and initial CTC concentration (a, d), initial pH and JLUE-MOG dosage (b, e) 

and initial CTC concentration and JLUE-MOG dosage (c, f).
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Fig. S18. (a) The excitation spectrum of JLUE-MOG-9. (b) The emission spectrum of 

TATB. (c) The UV-Vis absorption spectrum of TATB. (d) The UV-Vis absorption 

spectrum of CTC. 
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digital photos of fluorescence of JLUE-MOG-9 under 254 nm UV light.
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(a) (b)

Fig. S20. The SEM results of (a) blank paper and (b) JLUE-MOG-9@paper.
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Fig. S21. The XPS spectra of JLUE-MOG-9@paper: (a) The survey spectrum. (b) 

High-solution spectrum of C 1s. (c) High-solution spectrum of N 1s. (d) High-solution 

spectrum of O 1s. (e) High-solution spectrum of Fe 2p. (f) High-solution spectrum of 

Tb 3d. (g) High-solution spectrum of Tb 4d.
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Fig. S22. The XPS spectra of blank paper: (a) The survey spectrum. (b) High-solution 

spectrum of C 1s. (c) High-solution spectrum of N 1s. (d) High-solution spectrum of O 

1s. (e) High-solution spectrum of Fe 2p. (f) High-solution spectrum of Tb 3d. (g) High-

solution spectrum of Tb 4d.
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Fig. S23. The XRD spectra of JLUE-MOG-9 and JLUE-MOG-9@paper.
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river water.
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Tables

Table S1. Pseudo-first-order kinetic model parameters for CTC adsorption by JLUE-

MOG-9, JLUE-MOG-10 and JLUE-MOG-11.

Pseudo-first-order kinetics

JLUE-MOGs
C0 

(mg·L–1)

qe,exp

(mg·g–1)

Removal 

Efficiency（

%）

k1

(h–1)

qe1,theor

(mg·g–1)

Δq1

（%

）

R2

20 19.57 97.32 6.98 11.42 71.39 0.97 

50 49.11 98.22 0.22 14.00 250.68 0.78 JLUE-MOG-9

100 97.75 97.75 0.04 45.54 114.63 0.94 

20 19.31 96.82 11.66 7.70 150.74 0.92 

50 49.21 98.42 0.87 11.79 317.46 0.86 JLUE-MOG-10

100 98.91 98.71 0.15 32.96 200.12 0.86 

20 19.21 95.30 12.86 6.38 201.26 0.91 

50 49.16 98.32 2.20 20.66 137.90 0.95 JLUE-MOG-11

100 99.11 99.11 0.48 45.65 117.12 0.94 
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Table S2. Pseudo-second-order kinetic model parameters for CTC adsorption by 

JLUE-MOG-9, JLUE-MOG-10 and JLUE-MOG-11.

Pseudo-second-order kinetics

JLUE-MOGs
C0

(mg·L–1)

qe,exp

(mg·g–1)

Removal 

Efficiency

（%）

k2

(g·mg–1·h–1)

qe2,theor

(mg·g–1)

Δq2

（%

）

R2

20 19.57 97.32 2.45 20.02 2.27 0.99

50 49.11 98.22 0.10 49.31 0.40 0.99JLUE-MOG-9

100 97.75 97.75 0.01 97.28 0.49 0.99

20 19.31 96.82 7.45 19.54 1.15 0.99

50 49.21 98.42 0.29 49.63 0.84 0.99JLUE-MOG-10

100 98.91 98.71 0.03 99.11 0.20 0.99

20 19.21 95.30 11.25 19.37 0.82 0.99

50 49.16 98.32 0.34 50.18 2.02 0.99JLUE-MOG-11

100 99.11 99.11 0.04 100.20 1.09 0.99
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Table S3. Intra-particle diffusion model parameters for CTC adsorption by JLUE-

MOG-9, JLUE-MOG-10 and JLUE-MOG-11.

Intra-particle diffusion model
Parameters

JLUE-MOG-9 JLUE-MOG-10 JLUE-MOG-11

C0

(mg·L–1)
20 50 100 20 50 100 20 50 100 

ki,1

(mg·g–1·h–1/2)
51.94 47.04 54.62 62.44 72.43 96.03 64.76 85.08 91.75 

C1

(mg·g–1)
0.52 4.84 9.48 0.95 4.00 7.48 1.10 2.29 7.63 

R2 0.97 0.94 0.92 0.94 0.93 0.93 0.93 0.96 0.95 

ki,2

(mg·g–1·h–1/2)
13.64 9.64 6.50 8.04 13.59 22.19 5.58 27.25 25.37 

C2

(mg·g–1)
10.88 29.95 51.55 15.13 32.23 49.55 16.35 24.23 49.44 

R2 0.99 0.96 0.94 0.94 0.95 0.95 0.96 0.97 0.96 

ki,3

(mg·g–1·h–1/2)
2.45 0.84 1.36 0.67 0.85 2.13 0.78 2.59 1.79 

C3

(mg·g–1)
17.37 44.72 81.02 18.79 46.95 85.79 18.66 44.98 91.62 

R2 0.95 0.89 0.97 0.81 0.73 0.89 0.99 0.84 0.74 



34

Table S4. Freundlich, Langmuir and Temkin adsorption isotherm model parameters for 

CTC adsorption by JLUE-MOG-9, JLUE-MOG-10 and JLUE-MOG-11 at 25 oC.

Freundlich 

isotherm

Langmuir 

isotherm

Temkin 

isotherm
JLUE-MOGs

n KF R2
qm

(mg·g–1)
KL R2

KT

(L·mg–1)

B

(J·mol–1)
R2

JLUE-MOG-9 2.54 39.81 0.98 912.47 3.23 0.91 0.089 131.84 0.87 

JLUE-MOG-10 2.97 132.59 0.97 1518.74 18.13 0.96 0.90 168.61 0.86 

JLUE-MOG-11 2.56 168.64 0.93 1520.82 74.13 0.99 1.11 237.43 0.98 
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Table S5. The water quality parameters of distilled water, tap water and river water.

COD 

(mg·L–

1)

TN

(mg·L–1)

TP

(mg·L–

1)

NO3
–-N

(mg·L–1)

NH4
+-N

(mg·L–1)

SS

(mg·L–

1)

Distilled Water n.d. 0.50 0.04 n.d. n.d. n.d.

Tap Water n.d. 6.45 0.01 n.d. 0.05 n.d.

River Water 24.00 16.24 0.13 5.83 0.10 1.00

a) n.d. means not detected
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Table S6. Cost estimation for the production of typical JLUE-MOG-10 per unit weight.

Cost Materials
Used amount/ 

Duration

Unit Price

(RMB)

Total Price

(RMB)

Fe(NO3)3·9H2O 0.1050 g 0.02 per gram 0.0021

Tb(NO3)3·6H2O 0.1179 g 0.010 per gram 0.0012

TATB 0.1576 g 0.07 per gram 0.011

Ethanol 1 mL 5.0 per liter 0.005

Raw 

materials

DMSO 5 mL 11.5 per liter 0.058

Net amount 0.25 per gram
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Table S7. FCCD experimental design and related CTC removal efficiencies by JLUE-

MOG-10.

Run
Initial 

pH

Initial CTC 

Concentration

(mg·L–1)

JLUE-MOG 

Dosage

(g·L–1)

CTC Removal 

Efficiency

(%)

1 2.0 125 1.00 44.50

2 10.0 50 0.50 72.17

3 2.0 50 1.50 66.04

4 6.0 125 1.00 91.01

5 6.0 125 1.50 93.63

6 10.0 200 1.50 93.12

7 6.0 50 1.00 97.20

8 6.0 125 1.00 92.02

9 10.0 125 1.00 76.27

10 6.0 125 1.00 92.02

11 10.0 50 1.50 92.97

12 6.0 200 1.00 91.85

13 6.0 125 1.00 94.68

14 2.0 50 0.50 56.00

15 6.0 125 1.00 90.84

16 2.0 200 0.50 41.65

17 6.0 125 1.00 92.82

18 2.0 200 1.50 47.54

19 10.0 200 0.50 75.24

20 6.0 125 0.50 81.83



38

Table S8. ANOVA for the optimized FCCD model.

Source
Sum of 

Squares
df

Mean 

Square

F 

Value

P-value 

Prob > F

Model 6456.55 9 717.39 126.85 < 0.0001 significant

A-Initial pH 2372.84 1 2372.84 419.58 < 0.0001

B-Initial CTC 

Concentration

122.39 1 122.39 21.64 0.0009

C-JLUE-MOG 

Dosage

440.82 1 440.82 77.95 < 0.0001

AB 162.64 1 162.64 28.76 0.0003

AC 64.68 1 64.68 11.44 0.0070

BC 6.27 1 6.27 1.11 0.3172

A2 2193.71 1 2193.71 387.91 < 0.0001

B2 95.70 1 95.70 16.92 0.0021

C2 2.20 1 2.20 0.39 0.5464

Residual 56.55 10 5.66

Lack of Fit 46.67 5 9.33 4.72 0.0568 not 

significant

Pure Error 9.88 5 1.98

Cor Total 6513.11 19

Std. Dev. 2.38 R2  0.9913

Mean 79.17 RAdj 
2  0.9835

C.V. %   3.00 RPred
2  0.9656

PRESS 224.28 Adeq Precision 35.06
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Table S9. FCCD design validation at optimized conditions.

Number pH

CTC 

Concentration

(mg·L-1)

JLUE-MOG 

Dosage

(g·L-1)

Removal 

efficiency

(Predicted)

(%)

Removal 

efficiency

(Actual)

(%)

1 6.0 50 1.00 100 96.96

2 7.1 61 1.02 100 96.60

3 7.1 51 0.89 99 93.90
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Table S10. Comparison of CTC detection limit by various sensors.

Sensor Analyte Detection limit References

Metal–organic coordination 

polymer(Zn(bix))
CTC 19 nM 64

CdTe QDs@ZIF-8 composite CTC 37 nM 65

TSA/BSA-Au/AgNCs probe CTC 64 nM 66

IL1-SMIP/MWCNT-IL/GCE CTC 80 nM 67

JLUE-MOG-7 CTC 520 nM 33

FHBA@ZIF-8@Eu-GMP TC 60 nM 68

[Cd(L)(chdc)⋅(H2O)]n TC 76 nM 69

carbon dots TC 170 nM 70

JLUE-MOG-9 CTC 79 nM This work
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Table S11. The recoveries of CTC in distilled water by the measurements of JLUE-

MOG-9 based on a smartphone.

Spiked Concentration 

(mg·L–1)

Found 

(mg·L–1)

Recovery

(%)

RSD

(%)

15 14.12 94.11 1.22

25 30.78 123.13 2.44

35 35.78 102.24 1.23
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Table S12. The recoveries of CTC in distilled water, tap water and river water by the 

measurements of JLUE-MOG-9@paper based on a smartphone.

Distilled Water Tap Water River WaterSpiked 

concentration 

(mg·L–1)

Found 

(mg·L–1)

Recovery

(%)

RSD

(%)

Found 

(mg·L–1)

Recovery

(%)

RSD

(%)

Found 

(mg·L–1)

Recovery

(%)

RSD

(%)

15 16.13 107.52 5.88 15.49 103.26 3.72 13.67 91.11 4.89

25 27.43 109.71 8.42 27.16 108.65 10.22 26.96 107.85 10.94

35 38.24 109.26 6.39 35.84 102.39 4.49 36.27 103.62 7.51


