Electronic supplementary information (ESI)⁺

Multimodal Hybrid 2D Networks *via* Thiol-Epoxides Reaction on 1T/2H MoS₂ Polytypes

Giulia Tuci,*^a Andrea Rossin,^a Cuong Pham-Huu,*^b Dario Mosconi,^c Lapo Luconi,^a Stefano Agnoli,^c Gaetano Granozzi,^c Giuliano Giambastiani *^{a,b}

- ^a Institute of Chemistry of OrganoMetallic Compounds, ICCOM-CNR and Consorzio INSTM, Via Madonna del Piano, 10 50019, Sesto F.no, Florence, Italy. <u>giulia.tuci@iccom.cnr.it</u>
- ^b Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), ECPM, UMR 7515 CNRS-University of Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex 02, France. <u>cuong.pham-huu@unistra.fr</u>, giambastiani@unistra.fr
- ^c Department of Chemical Science of the University of Padua and INSTM unit, Via Marzolo 1 35131 Padova, Italy

Contents

Fig. S1 [†] . Mo 3d and S 2p XPS core level regions of CE-MoS ₂ together with their fits	S2
Fig. S2 [†] . Mo 3d, S $2p$ and C $1s$ XPS core level regions of MoS ₂ ^{Ph} (7) and their fits	S2
Fig. S3 [†] . Mo 3d and S $2p$ XPS core level regions of MoS_2^{Br} (5) along with their fits	S3
Fig. S4 ^{\dagger} . Mo 3d and S 2p XPS core level regions of MoS ₂ ^{Cl} (6) along with their fits	S3
Fig. S5 [†] . Mo 3d and S $2p$ XPS core level regions of MoS_2^{NHBoc} (8) along with their fits	S4
Table S1 [†] . Elemental analysis (EA) and functional groups loading for post-derivatized	
samples 10-11	S4
Fig. S6 [†] . IR spectrum of MoS_2^{oxaz} (10)	S4
Fig. S7 [†] . Mo 3d, S 2p and N 1s XPS core level regions of MoS_2^{oxaz} (10) and their fits	S5
Fig. S8 [†] . Thermogravimetric profile of $MoS_2^{C=C}$ (11)	S5
Fig. S9 ⁺ . Mo 3d, S 2p and C 1s XPS core level regions of $MoS_2^{C=C}(11)$ along with their fits	S 6

Fig. S1[†]. (A) Mo 3d and (B) S 2p XPS core level regions of CE-MoS₂ together with their relative fits

Fig. S2[†]. (A) Mo 3d, (B) S 2p and (C) C 1s XPS core level regions of MoS_2^{Ph} (7) and their relative fits.

Fig. S3[†]. (A) Mo 3d and (B) S 2p XPS core level regions of MoS₂^{Br} (5) along with their relative fits.

Fig. S4[†]. (A) Mo 3*d* and (B) S 2*p* XPS core level regions of MoS_2^{Cl} (6) along with their relative fits.

Fig. S5[†]. (A) Mo 3d and (B) S 2p XPS core level regions of MoS₂^{NHBoc} (8) along with their relative fits.

Table S1⁺. Elemental analysis (EA) and functional groups loading for post-derivatized samples 10-11

Samples	Elemental analysis ^[a]			S/grafted group	Functional groups loading (mmol/g)	
-	N wt.%	C wt.%	S wt.%	molar ratio	from EA ^[b]	from TGA ^[c]
MoS_2^{oxaz} (10)	1.22	5.89	27.81	9.7	0.89 (0.87) ^[d]	0.71
$MoS_2^{C=C}(11)$	-	9.03	26.28	10.6	0.77	0.52

^[a] calculated as average values over three independent runs ^[b] loading calculated from C wt.% ^[c] calculated from TG weight losses (%) in the 40 - 300 °C temperature range ^[d] loading calculated from N wt.%

Fig. S6[†]. IR spectrum of MoS_2^{oxaz} (10)

Fig. S7[†]. (A) Mo 3d, (B) S 2p and (C) N 1s XPS core level regions of MoS_2^{oxaz} (10) and their relative fits.

Fig. S8[†]. Thermogravimetric profile of $MoS_2^{C=C}(11)$ at comparison with its starting material MoS_2^{Ph} (7). Thermal program: 40-600 °C, 5 °C min⁻¹, N₂ atmosphere, 50 mL min⁻¹.

Fig. S9[†]. (A) Mo 3*d*, (B) S 2*p* and (C) C 1s XPS core level regions of $MoS_2^{C=C}(11)$ along with their relative fits.