Site engineering strategy toward enhanced luminescence thermostability of Cr³⁺ doped broadband NIR phosphor and its application

Shengqiang Liu, Hao Cai, Shiyou Zhang, Zhen Song, Zhiguo Xia, Quanlin Liu*

The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China.

* Corresponding Author: E-mail address: qlliu@ustb.edu.cn (Quanlin Liu)

Atom z Occ. Site х у P 63/mmc space group 0.000(0) 0.000(0) 0.000(0) (194) 1 Ga Ga^I 1.0002a 0.000(0) 0.000(0) 3 Ga∎ 0.242(7)0.500 Ga 4e 4 Ga Ga∎ 0.333(3) 0.666(7) 0.027(4) 1.000 4f symmetry hexagonal a=5.793(0) 6 Ga Ga₩ 0.333(3) 0.666(7)0.190(1) 1.000 4f Lattice parameters (Å) c=22.819(1) 7 Ga Ga♥ -0.168(5)0.163(1) 0.109(5) 1.000 12k 8 0 O I 0.000(0) 0.000(0) 0.150(7) 1.0004e O∎ R_p 7.101 9 0 0.666(7) 0.333(3) 0.055(3) 1.000 4f O∎ R_w 9.413 0.181(8) -0.181(8) 0.250(0) 10 1.000 6h 0 Rexp 4.219 11 0 ON 0.155(5) -0.155(5) 0.052(5) 1.000 12k 12 0 ОV 0.504(5)-0.504(5)0.150(0)1.000 12k 13 0.666(7) 0.333(3) 0.250(0) 1.000 2d Sr Sr I

Table S 1. The refined structural parameters of SGO with P 63/mmc.

Table S 2. Ga-O bond length data derived from refined results.

	Bond	Average		Bond	Average		Bond	Average
	length (Å)	(Å)		length (Å)	(Å)		length (Å)	(Å)
Ga ^I -O	1.967(1)	1.967	Ga [™] -O	1.944(7)	1.996	Ga ^v -O	2.073(5)	1.979
	1.967(1)			2.046(3)			1.923(4)	
	1.967(1)			1.944(7)			1.874(7)	
	1.967(1)			2.0463)			2.073(5)	
	1.967(1)			2.046(3)			1.874(4)	
	1.967(1)			1.944(7)			2.056(2)	

Table S 3. Photoluminescence properties of some Cr³⁺ doped shost.

Host	E _m (nm)	IQE (%)	EQE (%)	I _{500K} (%)	Refs
LiScP ₂ O ₇	877	38	20	< 20	S1
$LaSc_3(BO_3)_4$	850	23	~	< 30	S2
ScBO ₃	800	72.8	~	~	S3
La ₂ MgZrO ₆	825	58	~	< 40	S4
$Ca_2LuZr_2Al_3O_{12}$	760	69.1	31.5	40	S5
Ca ₂ LuScGa ₂ Ge ₂ O ₁₂	800	53	~	< 40	S6
$Ca_3Sc_2Si_3O_{12}$	~770	92.3	25.5	90	S7
Y ₂ CaAl ₄ SiO ₁₂	744	75.9	~	< 80	S8
$SrGa_{12}O_{19}$	770	98.2	45	86.5	This work

Figure S1. (a) XRD patterns of un-doped SGO and standard Bragg reflection peaks of JCPDS 82-0712. (b) Rietveld refinement result of un-doped SGO.

Figure S2. Tanabe—Sugano energy-level diagram for Cr³⁺ ([Ar]3d³) in SGO host.

Figure S3. Concentration-dependence PL spectra for $SrGa_{12-x}O_{19}$: xCr^{3+} (x=0.01, 0.02, 0.05, 0.1, 0.2, 0.5). The inset shows the integrated intensity *vs* Cr^{3+} concentration scatters.

Figure S4. UV diffuse reflection spectra for the solid solution $(SrGa)_{1-y}(LaMg)_yGa_{11}O_{19}$. (y=0-1). The inset shows the bandgap (eV) as a function of y value.

Figure S5. luminescence decay curves and multi-exponential fitting of $SrGa_{12}O_{19}$: $0.1Cr^{3+}$ at 80 and 300 K.

Figure S6. luminescence decay curves for LaMgGa_{10.9}O₁₉:0.1Cr³⁺ and SrGa_{11.9}O₁₉:0.1Cr³⁺, and multi-exponential fitting results at 80 K.

Figure S7. PLE spectra of SGO:0.1Cr³⁺ monitoring at different emission wavelength (694, 740, 810 nm).

Figure S8. (a) 3D-TL curves for SGO:0.1Cr³⁺. The x and y axes denote the temperature (K) and emission wavelength (nm), respectively. (b) 2D-TL curve for SGO:0.1Cr³⁺ and Gaussian fitting curves.

Figure S9. (a) 2D-thermoluminescence curves of SrGa₁₂O₁₉:0.1Cr³⁺ *via* tunable heating rate β (β =1, 2, 3, 4, 5, 7 K/s) approach. (b) $ln(T_m^2/\beta)$ versus $1/kT_m$ scatter and linear fitting results.

References:

- L. Yao, Q. Shao, S. Han, C. Liang, J. He, J. Jiang, Enhancing Near-Infrared Photoluminescence Intensity and Spectral Properties in Yb³⁺ Codoped LiScP₂O₇:Cr³⁺, *Chem. Mater.* 2020, 32, 2430–2439.
- [2] T. Gao, W. Zhuang, R. Liu, Y. Liu, C. Yan, X. Chen, Design of a Broadband NIR Phosphor for Security-Monitoring LEDs: Tunable Photoluminescence Properties and Enhanced Thermal Stability, *Cryst. Growth Des.* 2020,20, 3851–3860.
- [3] M.-H. Fang, P.-Y. Huang, Z. Bao, N. Majewska, T. Leśniewski, S. Mahlik, M. Grinberg, G. Leniec, S.M. Kaczmarek, C.-W. Yang, K.-M. Lu, H.-S. Sheu, R.-S. Liu, Penetrating Biological Tissue Using Light-Emitting Diodes with a Highly Efficient Near-Infrared ScBO₃:Cr³⁺ Phosphor, *Chem. Mater.* 2020, 32, 2166–2171.
- [4] H. Zeng, T. Zhou, L. Wang, R.-J. Xie, Two-Site Occupation for Exploring Ultra-Broadband Near-Infrared Phosphor—Double-Perovskite La₂MgZrO₆:Cr³⁺, *Chem. Mater.* 2019, 31, 5245–5253.
- [5] L. Zhang, S. Zhang, Z. Hao, X. Zhang, G.H. Pan, Y. Luo, H. Wu, J. Zhang, A high efficiency broad-band nearinfrared Ca₂LuZr₂Al₃O₁₂:Cr³⁺ garnet phosphor for blue LED chips, *J. Mater. Chem. C.* 2018, 6, 4967.
- [6] B. Bai, P. Dang, D. Huang, H. Lian, J. Lin, Broadband Near-Infrared Emitting Ca₂LuScGa₂Ge₂O₁₂:Cr³⁺ Phosphors: Luminescence Properties and Application in Light-Emitting Diodes, *Inorg. Chem.* 2020, 59, 13481–13488.
- [7] Z. Jia, C. Yuan, Y. Liu, X.-J. Wang, P. Sun, L. Wang, H. Jiang, J. Jiang, Strategies to approach high performance in Cr³⁺-doped phosphors for high-power NIR-LED light sources, *Light Sci. Appl.* 2020, 9, 86.
- [8] M. Mao, T. Zhou, H. Zeng, L. Wang, F. Huang, X. Tang, R.J. Xie, Broadband near-infrared (NIR) emission realized by the crystal-field engineering of Y_{3-x}Ca_xAl_{5-x}Si_xO₁₂:Cr³⁺ (x = 0–2.0) garnet phosphors, *J. Mater. Chem. C.* 2020, 8, 1981.