Supplementary data

One-step fabrication of stretchable and anti-oil-fouling nanofiber membrane for solar steam generation

Mantang He a, Huijie Liu a, Liming Wang a,*, Xiaohong Qin a,*, Jianyong Yu b

a Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China

b Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China

* Corresponding authors.

E-mail addresses: wangliming@dhu.edu.cn (L. Wang), xhqin@dhu.edu.cn (X. Qin)
Fig. S1. Wicking measurements of PDA@CNT/PU nanofiber membrane in oil layer on water and oil-in-water emulsion.

Fig. S2. Digital photograph of fabricated device for solar steam generation test.
Fig. S3. IR images of PU nanofiber membrane on water, and PDA@CNT/PU nanofiber membrane on water, water with oil layer and oil-in-water emulsion before 1 sun illumination.

Fig. S4. Light absorption spectrum of PDA@CNT/PU nanofiber membrane.
Fig. S5. Evaporation rate of PDA@CNT/PU nanofiber membrane under cycle numbers of test.

Fig. S6. Resistance of PDA@CNT/PU nanofiber membrane under different strain.
Fig. S7. Resistance of PDA@CNT/PU nanofiber membrane after different uniaxial stretching cycle under strain of 100%.