Electronic Supporting Information

Ultra-stable water-dispersive perovskite QDs encapsulated by triple siloxane coupling agent system with different hydrophilic/hydrophobic properties

Bingfeng Shi, ${ }^{\text {a }}$ Jianhua Lü, ${ }^{\text {b }}$ Ying Liu, ${ }^{\text {a }}$ Yang Xiao ${ }^{\text {a }}$ and Changli Lü*a
${ }^{\mathrm{a}}$ Institute of Chemistry, Northeast Normal University, Changchun 130024, P. R. China.
${ }^{b}$ Narcotics Control School, Yunnan Police College, Kunming 650223, P. R. China.

[^0]
EXPERIMENTAL

Materials and chemicals NH_{2}-PEG was synthesized according to a pervious literature. ${ }^{[1]}$ (3Triethoxysilyl) propyl isocyanate (ICPTES) (97\%) and (3-aminopropyl) triethoxysilane (APTES) (99\%) were purchased from Sinopharm. Perfluorooctyltrimethoxysilane (PFMS) was provided by Alfa Aesar chemical co. ltd. Ditin butyl dilaurate (DBTDL), PbBr_{2} (99\%), $\mathrm{CsBr}(99.9 \%$), p-toluenesulfonyl chloride ($\mathrm{p}-\mathrm{TsCl}$), ethylenediamine, triethylamine, and hydrobromic acid (HBr) (48% in water) were purchased from Aladdin Reagent Co., Ltd. Poly(ethylene glycol) (mPEG_{113}) was obtained from Shanghai Yuanye Biological Technology Co., Ltd. Toluene, N,N-dimethylformamide (DMF), dichloromethane (DCM), methanol, ethanol, tetrahydrofuran (THF), and acetone were obtained from Beijing Chemical Works.

Synthesis of silane coupling agent modified by polyethylene glycol (Si-PEG) Into a roundbottom flask were added catalyst amount DBTDL, mPEG113 (5.0 g, 1.0 mmol), and 20 mL of anhydrous tetrahydrofuran (THF). After slowly dropwise of 0.24 mL ICPTES, the reaction was kept for the stir at room temperature for one day (molar proportion of ICPTES and mPEG113 is $1: 1$). The reaction mixture was precipitated in cold ethyl ether three times, and the resulted product was vacuum-dried.

Synthesis of PQDs@ $\mathbf{S i O}_{2}$-a PQDs@ $@ \mathrm{SiO}_{2}$-a was synthesized by using the LARP method as described below. Briefly, $\mathrm{PbBr}_{2}(0.4 \mathrm{mmol}, 0.146 \mathrm{~g}), \mathrm{CsBr}(0.2 \mathrm{mmol}, 0.042 \mathrm{~g})$, and APTES $(100 \mu \mathrm{~L})$ were mixed in 10 mL DMF, and then $20 \mu \mathrm{~L}$ of HBr was injected into the above solution. The above solution was uniformly mixed quickly as the precursor. Under vigorous stirring, $500 \mu \mathrm{~L}$ of the precursor was added to 10 mL toluene rapidly. The mixture solution immediately showed strong fluorescence emission. After stirring for 20 min to complete the reaction, the toluene solution was centrifuged at 10000 rpm for 5 min , and a precipitate with bright fluorescence was obtained.

Synthesis of PQDs@ $\mathbf{S i O}_{\mathbf{2}}$-b PQDs@ SiO_{2}-b was synthesized by the LARP method. Briefly, $\mathrm{PbBr}_{2}(0.4 \mathrm{mmol}, 0.146 \mathrm{~g}), \mathrm{CsBr}(0.2 \mathrm{mmol}, 0.042 \mathrm{~g})$, APTES $(100 \mu \mathrm{~L})$, and PMFS $(250 \mu \mathrm{~L})$ were mixed in 10 mL DMF, and then $20 \mu \mathrm{~L}$ of HBr was injected into the above solution and then $20 \mu \mathrm{~L}$ of HBr was injected into the above solution. The above solution was uniformly mixed quickly as the precursor. Under vigorous stirring, $500 \mu \mathrm{~L}$ of the precursor was added to 10 mL toluene rapidly. The mixture solution immediately showed strong fluorescence emission. After stirring for 20 min to complete the reaction, the toluene solution was centrifuged at 10000 rpm for 5 min , and a precipitate with bright fluorescence was obtained.

Synthesis of PQDs@ $\mathbf{S i O}_{2}$-c The synthesis of $\mathrm{PQDs} @ \mathrm{SiO}_{2}$-c was similar to that of PQDs@ SiO_{2}-b, except adding $5 \mathrm{mg} \mathrm{NH}_{2}$-PEG in the toluene during the synthetic process.

Synthesis of PQDs@SiO $\mathbf{2}_{\mathbf{2}}$-d The synthetic procedure of $\mathrm{PQDs} @ \mathrm{SiO}_{2}$-d was similar to that of PQDs@ $\mathrm{SiO}_{2}-\mathrm{b}$, except adding 15 mg Si-PEG in the toluene during the preparation process.

Cytotoxicity evaluation and cellular imaging HeLa cells were selected to the cytotoxicity evaluation and cellular imaging and were cultured in Dulbecco's modified Eagle's medium (DMEM) with fetal bovineserum (10%) $\left(37^{\circ} \mathrm{C}\right.$ and $\left.5 \% \mathrm{CO}_{2}\right)$. The cytotoxicity evaluation of PQDs@ SiO_{2}-d was proved by the methylthiazolyldiphenyltetrazolium bromide (MTT) assays. After 24 h of incubation of HeLa cells in a 96 -well plate, a fresh cell culture media with different concentrations of PQDs@ SiO $_{2}$-d (20-120 $\mu \mathrm{g} \mathrm{mL}^{-1}$) was used to replace the old one and further cultured for 24 h . After 20 h incubation, adding $15 \mu \mathrm{~L}$ DDB to each well was incubated for 4 h . Finally, using a Tecan Infinite M1000 plate reader (Durham, NC, USA) determined the OD value of each well under the wavelength at 490 nm .

For cell imaging, HeLa cells were incubated on 8-well chamber ($37^{\circ} \mathrm{C}$ and $5 \% \mathrm{CO}_{2}$) for 24 h firstly, and then fresh medium containing PQDs@ $\mathrm{SiO}_{2}-\mathrm{d}\left(20 \mu \mathrm{~g} \mathrm{~mL}{ }^{-1}\right)$ was used to replace the old one. After 4 h incubation, the obtained HeLa cells were washed with PBS, and 4`,6-
diamidino-2-phenylindole (DAPI) was added to 10 min prior to the imaging for nuclear counterstaining. Prior to imaging, cells were washed with PBS for three times. After washing, the cell imaging as performed on a confocal laser scanning microscope (Nikon C1Si).

Characterization TEM images were measured on JEOL-2100F electron microscope. All PL spectra, PLQYs, and PL lifetimes were recorded with a fluorescence spectrophotometer (Edinburgh FLSP920). UV-vis absorption spectra were performed on a UV-vis spectrophotometer (SHIMADZU UV-2550). FTIR spectra were performed with a FTIR spectrometer (Magna 560). XRD measurements were recorded using a Rigaku D/max-TTRIII diffractometer using Cu Ka radiation ($\mathrm{l}=0.15405 \mathrm{~nm}$). XPS spectra were performed with a VGESCALAB 220-IXL spectrometer.

Exponential fitting of PL decays and calculation Decay time of the samples was obtained from the decay curves, which is simulated by using a biexponential decay function (1):

$$
\begin{equation*}
I(t)=A_{0}+A_{1} \exp \left(-t / \tau_{1}\right)+A_{2} \exp \left(-t / \tau_{2}\right) \tag{1}
\end{equation*}
$$

where $\mathrm{I}(\mathrm{t})$ is the PL intensity at time $\mathrm{t}, \mathrm{A}_{\mathrm{i}}$ are the weight constants, τ_{1} and τ_{2} represent the PL decay time. The mean lifetime $\tau_{\text {ave }}$ is calculated by the formula (2):

$$
\begin{equation*}
\tau_{\mathrm{ave}=} \frac{\mathrm{A} \tau_{1}^{2}+\mathrm{B} \tau_{2}^{2}}{\mathrm{~A} \tau_{1}+\mathrm{B} \tau_{2}} \tag{2}
\end{equation*}
$$

where τ_{1} and τ_{2} are the PL decay time, and A and B represent the ratio of component contribution to the decay. Actually, τ_{1} is due to an internal reorganization, while τ_{2} is from the surface state reorganization. The radiative lifetime $\left(\tau_{r}\right)$ and non-radiative lifetime ($\tau_{n r}$) can be calculated by the following formula:

$$
\begin{align*}
\tau_{\text {ave }} & =\frac{1}{k_{f}+\sum k_{i}} \tag{3}\\
P L Q Y & =\frac{k_{f}}{k_{f}+\sum k_{i}} \tag{4}
\end{align*}
$$

$$
\begin{gather*}
\tau_{\mathrm{r}}=\frac{1}{k_{f}} \tag{5}\\
\tau_{n r}=\frac{1}{\sum k_{i}} \tag{6}
\end{gather*}
$$

where k_{f} and $\Sigma k i$ represent the radiative recombination and non-radiative recombination rate constant, respectively.

Scheme S1. Synthetic route of NH_{2}-PEG.

Fig. S1. ${ }^{1} \mathrm{H}$-NMR spectra for a) $\mathrm{mPEG}_{113}-\mathrm{OTs}$ and b) NH_{2}-PEG.

Fig. S2. FTIR spectra for $\mathrm{mPEG}_{113}, \mathrm{mPEG}_{113}-\mathrm{OTs}$, and NH_{2}-PEG.

As shown in Scheme S1, the NH_{2}-PEG was synthesized by the reaction of ethylenediamine with active intermediate $\mathrm{mPEG}_{113}-\mathrm{OTs}$ obtained from $\mathrm{m}-\mathrm{PEG}_{113}$ and p toluenesulfonyl chloride ($\mathrm{p}-\mathrm{TsCl}$). The chemical structure of NH_{2}-PEG was confirmed by ${ }^{1} \mathrm{H}$ NMR and FTIR (Fig. S1 and S2). The signal 1 at 3.39 ppm can be attributed to the terminal methoxy of mPEG_{113} and the broad signal at $3.5-4.0 \mathrm{ppm}$ is assigned to the methylene hydrogen of the PEG main chain (Fig. S1a). The peak at 4.17 ppm is ascribed to the methylene hydrogen which connected to p-toluenesulfonate. The signals at $7.0-8.3 \mathrm{ppm}$ are characteristic peaks of the benzene ring in p-toluenesulfonate. In Fig. S1b, the broad signals at 3.0-3.5 ppm are assigned to methylene which connected to the amino group and the signals corresponding to the p-toluenesulfonate group disappeared. From the FTIR spectra (Fig. S2) of $\mathrm{m}-\mathrm{PEG}_{113}$-OTs and NH_{2}-PEG, the characteristic peak of $\mathrm{N}-\mathrm{H}$ at $1680 \mathrm{~cm}^{-1}$ also can be observed, which indicates that -OTs group has been replaced by ethylenediamine to obtain the target product NH_{2}-PEG.

Scheme S2. Synthetic route of Si-PEG.

Fig. S3. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra for Si-PEG.

Fig. S4. FTIR spectra for ICPTES, mPEG $_{113}$, and Si-PEG.

The Si-PEG was prepared by the polyaddition reaction between the isocyanate group (3triethoxysilyl) propyl isocyanate (ICPTES) and the hydroxyl group on the end of m-PEG ${ }_{113}$ (Scheme S2). The peak at $5.3-5.4 \mathrm{ppm}$ can be attributed to the newly formed N - H group by polyaddition reaction (Fig. S3). As shown in Fig. S3, the characteristic signal at 3.39 ppm can be attributed to the methylene of $\mathrm{m}-\mathrm{PEG}_{113}$. The peaks at $0.78-0.83,1.38 \mathrm{ppm}$ are assigned to the methylene in ICPTES. The broad peak at $1.8-2.0 \mathrm{ppm}$ is attributed to the methyl in ICPTES. From the FTIR spectra (Fig. S4), the characteristic peak of $-\mathrm{N}=\mathrm{C}=\mathrm{O}$ at $2273 \mathrm{~cm}^{-1}$ disappeared and a new peak corresponding to the urethane group was observed at 1760-1530 cm^{-1}. The above results indicated the successful synthesis of Si-PEG.

Fig. S5. (a) PL spectra of PQD's colloidal solutions obtained by different feeding amount of APTES with $20 \mu \mathrm{~L}$ of HBr . (b) PL spectra of PQD's colloidal solutions obtained by different concentrations of PFMS with $100 \mu \mathrm{~L}$ of APTES and $20 \mu \mathrm{~L}$ of HBr . (c) PL spectra of PQD's colloidal solutions obtained by different concentrations of NH_{2}-PEG with $100 \mu \mathrm{~L}$ of APTES, $20 \mu \mathrm{~L}$ of HBr , and $250 \mu \mathrm{~L}$ of PFMS. (d) PL spectra of PQD's colloidal solutions obtained by different concentrations of Si-PEG with $100 \mu \mathrm{~L}$ of APTES, $20 \mu \mathrm{~L}$ of HBr , and $250 \mu \mathrm{~L}$ of PFMS.

Fig. S6. High-resolution Br 3 d spectra of (a) $\mathrm{PQDs} @ \mathrm{SiO}_{2}$-b, (b) $\mathrm{PQDs} @ \mathrm{SiO}_{2}$-c, and (c) PQDs@SiO ${ }_{2}$-d.

Fig. S7. High-resolution Cs 3d spectra of (a) $\mathrm{PQDs} @ \mathrm{SiO}_{2}$-b, (b) $\mathrm{PQDs} @ \mathrm{SiO}_{2}$-c, and (c) PQDs@SiO ${ }_{2}$-d.

Fig. S8. High-resolution Pb 4 f spectra of (a) $\mathrm{PQDs} @ \mathrm{SiO}_{2}$-b, (b) $\mathrm{PQDs} @ \mathrm{SiO}_{2}$-c, and (c) PQDs@ SiO_{2}-d.

Fig. S9. High-resolution N 1s spectra of (a) $\mathrm{PQDs} @ \mathrm{SiO}_{2}$-b, (b) $\mathrm{PQDs} @ \mathrm{SiO}_{2}$-c, and (c) PQDs@ SiO_{2}-d.

Fig. S10. High-resolution O 1s spectra of d) PQDs@ $\mathrm{SiO}_{2}-\mathrm{b}$, e) $\mathrm{PQDs} @ \mathrm{SiO}_{2}$-c, and f) PQDs@ SiO_{2}-d.

Fig. S11. High-resolution F 1s spectra of g) PQDs@ SiO_{2}-b, h) $\mathrm{PQDs} @ \mathrm{SiO}_{2}$-c, and i) PQDs@ SiO $_{2}$-d.

Fig. S12. High-resolution Si 2 p spectra of j) PQDs@ $\left.\mathrm{SiO}_{2}-\mathrm{b}, \mathrm{k}\right) \mathrm{PQDs} @ \mathrm{SiO}_{2}-\mathrm{c}$, and 1) PQDs@ SiO_{2}-d.

Fig. S13. Time-resolved FL decay curves of $\mathrm{PQDs} @ \mathrm{SiO}_{2}$-a, $\mathrm{PQDs} @ \mathrm{SiO}_{2}$-b, $\mathrm{PQDs} @ \mathrm{SiO}_{2}$-c, and PQDs@ SiO_{2}-d.

Fig. S14. PL spectra of $\mathrm{PQDs} @ \mathrm{SiO}_{2}-\mathrm{c}\left(1.0 \mathrm{mg} \mathrm{mL}^{-1}\right)$ in toluene, water, THF, acetone, ethanol, PBS buffer solution, HCl solution $(\mathrm{pH}=1)$ and NaOH solution $(\mathrm{pH}=14)$.

Fig. S15. PL spectra of $\mathrm{PQDs} @ \mathrm{SiO}_{2}-\mathrm{d}\left(1.0 \mathrm{mg} \mathrm{mL}^{-1}\right)$ in toluene, water, THF, acetone, ethanol, PBS buffer solution, HCl solution $(\mathrm{pH}=1)$ and NaOH solution $(\mathrm{pH}=14)$.

Fig. S16. Temperature-dependent PL intensity of (a) $\mathrm{PQDs} @ \mathrm{SiO}_{2}$-c and (b) $\mathrm{PQDs} @ \mathrm{SiO}_{2}$-d in water ($1.0 \mathrm{mg} \mathrm{mL}^{-1}$).

Table S1. Experimental conditions of preparing samples via LARP method. ${ }^{\text {a }}$

Samples	Ligand in precusors					Ligand in nucleation solvent	
	PbBr_{2} (g)	CsBr (g)	APTES ($\mu \mathrm{L}$)	$\begin{aligned} & \mathrm{HBr} \\ & (\mu \mathrm{~L}) \end{aligned}$	PFMS ($\mu \mathrm{L}$)	$\begin{gathered} \mathrm{NH}_{2}-\mathrm{PEG} \\ (\mathrm{mg}) \end{gathered}$	$\begin{gathered} \text { Si-PEG } \\ (\mathrm{mg}) \end{gathered}$
PQDs@ SiO_{2}-a	0.146	0.042	100	20	none	none	none
$\mathrm{PQDs} @ \mathrm{SiO}_{2}$-b	0.146	0.042	100	20	250	none	none
PQDs@ SiO_{2}-c	0.146	0.042	100	20	250	5	none
$\mathrm{PQDs} @ \mathrm{SiO}_{2}$-d	0.146	0.042	100	20	250	none	15

${ }^{\text {a }}$ Precursor solvent: DMF. Nucleation solvent: toluene. Temperature: room temperature.

Table S2. $\mathrm{Cs} / \mathrm{Pb}, \mathrm{Pb} / \mathrm{Br}$, and $\mathrm{Cs} / \mathrm{Pb} / \mathrm{Br}$ ratios of $\mathrm{PQDs} @ \mathrm{SiO}_{2}-\mathrm{b}, \mathrm{PQDs} @ \mathrm{SiO}_{2}-\mathrm{c}$, and PQDs@ SiO_{2}-d measured by XPS.

Samples	$\mathrm{Cs} / \mathrm{Pb}$	$\mathrm{Pb} / \mathrm{Br}$	$\mathrm{Cs} / \mathrm{Pb} / \mathrm{Br}$
PQDs $@ \mathrm{SiO}_{2}$-b	$1: 1.3$	$1: 4.34$	$1: 1.3: 5.64$
PQDs@ SiO_{2}-c	$1: 2.56$	$1: 4.49$	$1: 2.56: 11.51$
PQDs@ SiO_{2}-d	$1: 0.79$	$1: 4.72$	$1: 0.79: 3.73$

Table S3. Summary of time-resolved FL decay measurements, where the lifetimes of samples are tested in toluene solution. τ_{1} and τ_{2} are the detailed recombination lifetimes, A and B represent the ratio of component contribution to the decay. k_{f} and $\Sigma k i$ represent the radiative recombination and the non-radiative recombination rate constant.

Samples	$\tau_{1}(\mathrm{~ns})$	$\mathrm{A} \%$	$\tau_{2}(\mathrm{~ns})$	$\mathrm{B} \%$	k_{f}	$\Sigma k i$
PQDs $@ \mathrm{SiO}_{2}$-a	45.92	43.61	276.64	56.39	2.56×10^{-3}	1.44×10^{-3}
$\mathrm{PQDs} @ \mathrm{SiO}_{2}-\mathrm{b}$	18.42	53.23	142.47	46.27	7.74×10^{-3}	0.16×10^{-3}
$\mathrm{PQDs} @ \mathrm{SiO}_{2}-\mathrm{c}$	19.27	34.25	142.31	65.75	4.54×10^{-3}	3.15×10^{-3}
$\mathrm{PQDs} @ \mathrm{SiO}_{2}-\mathrm{d}$	24.53	42.46	112.67	57.54	9.26×10^{-3}	0.70×10^{-3}

Table S4. Overview and comparison of the PL spectroscopic results from Fig. S14 of PQDs@ $\mathrm{SiO}_{2}-\mathrm{c}$ in toluene, water, THF, acetone, ethanol, PBS buffer solution, HCl solution $(\mathrm{pH}=1)$ and NaOH solution $(\mathrm{pH}=14)\left(1.0 \mathrm{mg} \mathrm{mL}^{-1}\right)$.

Solution	Peak (nm)	Intensity	Ratio
Toluene	505	43399	1
Water	512	37091	0.85
THF	509	31178	0.72
Acetone	505	24318	0.56
Ethanol	505	22027	0.51
PBS	506	27555	0.63
pH=1	492	25182	0.58
$\mathrm{pH}=14$	506	11378	0.26

Table S5. Overview and comparison of the PL spectroscopic results from Fig. S15 of PQDs@ SiO_{2}-d in toluene, water, THF, acetone, ethanol, PBS buffer solution, HCl solution $(\mathrm{pH}=1)$ and NaOH solution $(\mathrm{pH}=14)\left(1.0 \mathrm{mg} \mathrm{mL}^{-1}\right)$.

Solution	Peak (nm)	Intensity	Ratio
Toluene	505	107240	1
Water	510	101000	0.94
THF	501	95108	0.89
Acetone	489	88370	0.82
Ethanol	506	79810	0.74
PBS	512	95067	0.87
$\mathrm{pH}=1$	506	101536	0.95
$\mathrm{pH}=14$	510	97663	0.91

REFERENCES

[1] Y. Chen, X. Song, F. Peng, J. Li, Preparation of Monomethoxy Poly(ethylene glycol) Amine, Fine Chemicals 2015, 32, 434.

[^0]: * Corresponding author.

 E-mail addresses: luc1055@nenu.edu.cn (C. Lü).

