Electronic Supplementary Information

Mono-, di- and tri-nuclear $\mathrm{Pt}^{\mathrm{II}}\left(\mathrm{C}^{\wedge} \mathrm{N}\right)(\mathrm{N}$-donor ligand) Cl complexes showing aggregation-induced phosphorescent emission (AIPE) behavior for efficient solution-processed organic light-emitting devices \dagger

Xi Chen, ${ }^{a}$ Yuling Sun, ${ }^{a}$ Xinyi Zhao, ${ }^{a}$ Xuming Deng, ${ }^{a}$ Xiaolong Yang, ${ }^{a}$ Yuanhui Sun, ${ }^{a}$ Guijiang Zhou*a and Zhaoxin Wu ${ }^{\text {b }}$
${ }^{a}$ School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China. E-mail: zhougj@mail.xjtu.edu.cn
${ }^{b}$ Key Laboratory of Photonics Technology for Information, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China. E-mail: zhaoxinwu@mail.xjtu.edu.cn

Contents

Synthesis of the key intermediate compounds S3
Fig. S1 ${ }^{1} \mathrm{H}$ NMR spectrum and ${ }^{13} \mathrm{C}$ NMR spectrum of Ph-PAYPt1 S6
Fig. S2 ${ }^{1} \mathrm{H}$ NMR spectrum and ${ }^{13} \mathrm{C}$ NMR spectrum of Ph-PAYPt2 S7
Fig. S3 ${ }^{1} \mathrm{H}$ NMR spectrum and ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{P h}$-PAYPt3 S8
Fig. S4. PL spectra of these mono-, di- and tri-nuclear $\mathrm{Pt}^{\mathrm{II}}\left(\mathrm{C}^{\wedge} \mathrm{N}\right)(\mathrm{N}$-donor S9
ligand) Cl complexes in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at 77 K .
Fig. S5 CV curves for Ph-PAYPt1, PhPAYPt2 and PhPAYPt3 S9
OLED fabrication and measurements S10
Fig. S6. EL spectrum for the devices except the optimized ones. S11
Fig. S7. Current density-voltage-luminance $(J-V-L)$ curves for the devices S12
except the optimized ones.
Fig. S8. Relationship between EL efficiencies and luminance for the devicesS13
except the optimized ones. (a) Device A1, (b) Device A3, (c) Device B1, (d)
Device B3, (e) Device C1 and (f) Device C3.

Ph-N1

Under a nitrogen atmosphere, bromobenzene ($5.00 \mathrm{~g}, 0.03 \mathrm{~mol}$), pyridyl-4-boronic acid ($4.70 \mathrm{~g}, 0.04$ mol) and $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(1.84 \mathrm{~g}, 1.59 \mathrm{mmol})$ were heated to $110{ }^{\circ} \mathrm{C}$ for 16 h in the mixture of 1,4-dioxane $(20 \mathrm{~mL})$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}(2 \mathrm{M}, 10 \mathrm{~mL})$ under vigorous stirring. After the reaction, the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and then purified by column chromatography, using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and ethyl acetate as the eluent. The products were obtained as white solid $(4.29 \mathrm{~g}, 87 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta(\mathrm{ppm}) 8.66(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.66-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.44(\mathrm{~m}, 5 \mathrm{H}) ;$ FAB-MS (m/z): $155[\mathrm{M}]^{+}$; Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~N}$: C 85.13, H 5.85, N 9.03; found, C 85.04, H 5.76, N 8.96.

Ph-N2

Under a nitrogen atmosphere, 1,3-dibromobenzene ($5.00 \mathrm{~g}, 0.02 \mathrm{~mol}$), pyridyl-4-boronic acid (6.26 g , $0.05 \mathrm{~mol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(1.22 \mathrm{~g}, 1.06 \mathrm{mmol})$ were heated to $110{ }^{\circ} \mathrm{C}$ for 16 h in the mixture of $1,4-$ dioxane (20 mL) and $\mathrm{Na}_{2} \mathrm{CO}_{3}(2 \mathrm{M}, 10 \mathrm{~mL})$ under vigorous stirring. After the reaction, the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and then purified by column chromatography, using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and ethyl acetate as the eluent. The products were obtained as white solid (3.69 g, 75\%). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 8.70(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.86(\mathrm{~s}, 1 \mathrm{H}), 7.71-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.63-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.50(\mathrm{~d}$, $J=6.0 \mathrm{~Hz}, 4 \mathrm{H})$; FAB-MS (m/z): $232[\mathrm{M}]^{+}$; Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{2}:$ C 82.73, H 5.21, N 12.06; found, C 82.65, H 5.16, N 11.98 .

Ph-N3

Under a nitrogen atmosphere, 1,3,5-tribromobenzene ($5.00 \mathrm{~g}, 0.02 \mathrm{~mol}$), pyridyl-4-boronic acid (7.03 $\mathrm{g}, 0.06 \mathrm{~mol})$ and $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.92 \mathrm{~g}, 0.79 \mathrm{mmol})$ were heated to $110{ }^{\circ} \mathrm{C}$ for 16 h in the mixture of $1,4-$ dioxane (20 mL) and $\mathrm{Na}_{2} \mathrm{CO}_{3}(2 \mathrm{M}, 10 \mathrm{~mL})$ under vigorous stirring. After the reaction, the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and then purified by column chromatography, using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and ethyl acetate as the eluent. The products were obtained as white solid (3.14 g, 64\%). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 8.75(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 6 \mathrm{H}), 7.92(\mathrm{~s}, 3 \mathrm{H}), 7.61(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 6 \mathrm{H}) ;$ FAB-MS (m/z): 309 [M] ${ }^{+}$; Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{~N}_{3}$: C 81.53, H 4.89, N 13.58; found, C 81.45, H 4.80, N 13.46.

L-N

Under a nitrogen atmosphere, 4-(diphenylamino)phenylboronic acid ($5.00 \mathrm{~g}, 0.02 \mathrm{~mol}$), 2bromopyridine ($3.28 \mathrm{~g}, 0.02 \mathrm{~mol}$) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(1.00 \mathrm{~g}, 0.86 \mathrm{mmol})$ were heated to $100{ }^{\circ} \mathrm{C}$ for 16 h in a mixed solvent of $2 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$ and THF. After the reaction, the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The organic phase was dried over by anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then purified by column chromatography, using petroleum ether as the eluent. The final product was white solid (4.40
$\mathrm{g}, 79 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 8.65(\mathrm{~d}, \mathrm{~J}=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.74-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.19-7.13(\mathrm{~m}, 7 \mathrm{H}), 7.05(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H})$.

$[(\mathbf{P A Y}) \mathbf{P t}(\mathrm{II})] \mu-\mathrm{Cl}_{2}[(\mathbf{P A Y}) \mathbf{P t}(\mathrm{II})]$

Under a nitrogen atmosphere, $\mathrm{K}_{2} \mathrm{PtCl}_{4}(5.00 \mathrm{~g}, 0.01 \mathrm{~mol})$ and $\mathrm{L}-\mathrm{N}(4.27 \mathrm{~g}, 0.01 \mathrm{~mol})$ were heated to $90^{\circ} \mathrm{C}$ for 16 h in a mixed solvent of 2-ethoxyethanol $(22.5 \mathrm{~mL})$ and water $(7.5 \mathrm{~mL})$. After cooling to the room temperature, saturated NaCl solution was added and the coarse dimer was collected by filtration and dried under vacuum.

Figure F. $1{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{P t - P h}-\mathbf{1}$

Fig. S1 ${ }^{1} \mathrm{H}$ NMR spectrum and ${ }^{13} \mathrm{C}$ NMR spectrum of Ph-PAYPt1

$\begin{array}{lllllllllllllllllllllllllllllll}168 & 166 & 164 & 162 & 160 & 158 & 156 & 154 & 152 & 150 & 148 & 146 & 144 & 142 & 140 & 138 & 136 & 134 & 132 & 130 & 128 & 126 & 124 & 122 & 120 & 118 & 116 & 114 & 11\end{array}$
Fig. S2 ${ }^{1} \mathrm{H}$ NMR spectrum and ${ }^{13} \mathrm{C}$ NMR spectrum of Ph-PAYPt2

$\begin{array}{lllllllllllllllllllllllllllllll}168 & 166 & 164 & 162 & 160 & 158 & 156 & 154 & 152 & 150 & 148 & 146 & 144 & 142 & 140 & 138 & 136 & 134 & 132 & 130 & 128 & 126 & 124 & 122 & 120 & 118 & 116\end{array}$

Fig. S3 ${ }^{1} \mathrm{H}$ NMR spectrum and ${ }^{13} \mathrm{C}$ NMR spectrum of Ph-PAYPt3

Fig. S4 PL spectra of these mono-, di- and tri-nuclear $\mathrm{Pt}^{\mathrm{II}}\left(\mathrm{C}^{\wedge} \mathrm{N}\right)(\mathrm{N}$-donor ligand) Cl complexes in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at 77 K .

Fig. S5 CV curves for Ph-PAYPt1, PhPAYPt2 and PhPAYPt3

OLED fabrication and measurements

The ITO glass substrates were cleaned in advance and exposed to ultraviolet-ozone for $c a .7 \mathrm{~min}$. The PEDOT:PSS, which plays the role of a hole injection layer, was spin-coated on the ITO glass substrates and then annealed at $120{ }^{\circ} \mathrm{C}$ for 20 min in the air. Then, the chlorobenzene solution containing the host materials and emitters with a certain doping ratio was spin-coated on surface of PEDOT:PSS layer to form the emission layer. The obtained ITO chip was dried at $80^{\circ} \mathrm{C}$ for 20 min before it was transferred to the deposition system to deposit other active layers, i.e., electrontransporting layer, electron-injection layer and Al cathode. The orange phosphorescent $\mathrm{Ir}-\mathrm{Tz}-1$ was synthesized by our laboratory. The EL spectra and CIE coordinates were measured with a PR655 spectra colorimeter. The driving voltages and efficiencies of the devices were measured with the Keithley 2400/2000 source meter. The efficiency and spectral measurements were carried out under ambient conditions.

Fig. S6 EL spectrum for the devices except the optimized ones.

Fig. S7. Current density-voltage-luminance $(J-V-L)$ curves for the devices except the optimized ones.

Fig. S8. Relationship between EL efficiencies and luminance for the devices except the optimized ones. (a) Device A1, (b) Device A3, (c) Device B1, (d) Device B3, (e) Device C1 and (f) Device C3.

