Supporting Information

Eu-doped ZnO quantum dots with solid-state fluorescence and dual emission for high-performance luminescent solar concentrators

Xiao Gong*, Hang Jiang, Mengyan Cao, Zhihui Rao, Xiujian Zhao, and Alberto Vomiero*

a. State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China. E-mail: xgong@whut.edu.cn

b. Division of Materials Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, 971 87 Luleå, Sweden. E-mail: alberto.vomiero@ltu.se

c. Department of Molecular Sciences and Nano Systems, Ca’ Foscari University of Venice Via Torino 155, 30172 Venezia Mestre, Italy
Figure S1. J-V curve of the Si solar cell under 1 sun.

Figure S2. PLQY of Eu-doped ZnO QDs as a function of different concentration of Eu(NO$_3$)$_3$$\cdot$6H$_2$O (excitation wavelength at 395 nm).

Table S1. Photovoltaic parameters of ZnO QDs/PVP thin-film LSCs.

<table>
<thead>
<tr>
<th>Pure ZnO QDs (wt%)</th>
<th>I_{sc} (mA)</th>
<th>V_{oc} (V)</th>
<th>Fill Factor (%)</th>
<th>η_{opt} (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.2</td>
<td>2.12</td>
<td>0.45</td>
<td>55.54</td>
<td>1.11</td>
</tr>
</tbody>
</table>
Figure S3. The stability of Eu-doped ZnO QDs LSC.