Supplementary Information

The supercapacitor electrode properties and energy storage mechanism of binary

transition metal sulfide MnCo₂S₄ compared with oxide MnCo₂O₄ studied using *in*

situ quick X-ray absorption spectroscopy

Su-Yang Hsu¹, Feng-Hao Hsu^{1,#}, Jeng-Lung Chen¹, Yu-Song Cheng¹, Jin-Ming Chen^{1,*}

and Kueih-Tzu Lu^{1,*}

¹National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan

*E-mail: jmchen@nsrrc.org.tw (J. M. Chen), ktlu@nsrrc.org.tw (K. T. Lu)

[#]Contributed equally to this work with the first author: S. Y. Hsu.

Fig. S1. The illustration of *in situ* XAS electrochemical reaction cell.

Fig. S2. FE-SEM images of (a) a Mn-Co precursor on a Ni foam and (b) a pristine Ni

foam.

Fig. S3. XPS spectra and the corresponding fitted curve of (a) Mn 2p, (b) Co 2p and (c)

O 1s in the MCO/NF electrode as prepared.

after 5000th charge/discharge cycles compared with MCO, Mn oxide/hydroxide and Co oxide/hydroxide JCPDS cards for comparison.

Fig. S5. Electrochemical performance of MCS//AC ASC in KOH aqueous electrolyte,

(a) CV curves at scan rate 50 mV s⁻¹ of the MCS/NF and AC/NF electrodes. (b) CV curves of MCS//AC ASC at various potential windows from 1 to 1.8 V at scan rate 50 mV s⁻¹. (c) CV curves of MCS//AC ASC at various scan rates. (d) GCD curves of MCS//AC ASC at varied current densities. (e) Specific capacity versus current density of MCS//AC ASC. (f) Ragone plot of MCS//AC ASC.

Fig. S6. XANES spectra of a MCO sample in situ at various operating potentials at the

(a) Mn K-edge and (b) Co K-edge.

Fig. S7. Radial distribution function (RDF) deduced from the Fourier transforms of k^3 weighted EXAFS spectra of a MCO sample at various operating potentials at the (a) Mn K-edge and (b) Co K-edge during charging and discharging

Electrode Material	Electrolyte	Capacity / mAh cm ⁻²	Cycle stability	Reference
NiCo ₂ S ₄ @NiCu–LDH ^{ab}	3 М КОН	$0.632 \text{ at } 2 \text{ mA cm}^{-2}$	74% after 3000 cycle	1
Cu _{0.5} Co _{0.5} -P@Ni(OH) ₂ ^b	2 М КОН	0.392 at 2 mA cm ⁻²	NA	2
NiMoO ₄	3 М КОН	0.33 at 1 mA cm ⁻²	85.1% after 10K cycle	3
NiCo LDHª	2 М КОН	0.19 at 0.5 mA cm ⁻²	89% after 10K cycle	4
CoMoO ₄ @NiWO ₄ ^b	6 М КОН	$0.464 \text{ at } 5 \text{ mA cm}^{-2}$	92.5% after 3000 cycle	5
MnCo ₂ S ₄	6 М КОН	1.17 at 3 mA cm ⁻²	89.93% after 5000 cycle	this work

Table S1. Electrochemical performance of $MnCo_2S_4$ compared with previous reports

^a Layered Double Hydroxides (LDH)

^b core-shell structure

References

- J. Huang, J. Xie, L. Wang, J. Zhang, P. Wang, P. Sun, Z. Yao and Y. Yang, Boosted Electrochemical Performance of Honeycomb-Like NiCu–LDH Nanosheets Anchoring on NiCo₂S₄ Nanotube Arrays for Flexible Solid-State Hybrid Supercapacitors, *Energy Fuels*, 2020, **34**, 13157-13166.
- X. Li, J. Huang, L. Wang, J. Zhang, S. Song, G. Li, P. Wang, P. Sun and Y. Yang, Hierarchical honeycomb-like networks of CuCo–P@Ni(OH)₂ nanosheet arrays enabling high-performance hybrid supercapacitors, *J. Alloys Compd.*, 2020, 838, 155626.
- K. A. Owusu, L. Qu, J. Li, Z. Wang, K. Zhao, C. Yang, K. M. Hercule, C. Lin, C. Shi, Q. Wei, L. Zhou and L. Mai, Low-crystalline iron oxide hydroxide nanoparticle anode for high-performance supercapacitors, *Nat. Commun.*, 2017, 8, 14264.
- K.-N. Kang, A. Ramadoss, J.-W. Min, J.-C. Yoon, D. Lee, S. J. Kang and J.-H. Jang, Wire-Shaped 3D-Hybrid Supercapacitors as Substitutes for Batteries, *Nanomicro Lett*, 2020, 12, 28.
- 5. F. H. Hsu, S. Y. Hsu, C. W. Pao, J. L. Chen, C. L. Chen, J. M. Chen and K. T. Lu, Electrochemical properties and mechanism of CoMoO₄@NiWO₄ core–shell nanoplates for high-performance supercapacitor electrode application studied

via in situ X-ray absorption spectroscopy, Nanoscale, 2020, 12, 13388-13397.