<Supplementary Information>

Solvent-mediated framework flexibility of interdigitated 2D

layered metal-organic frameworks

Seonghwan Lee,^{†a} Seok Jeong,^{†a} Junmo Seong,^a Jaewoong Lim,^a Amitosh Sharma,^a Somi

Won,^a Dohyun Moon,^b Seung Bin Baek^a and Myoung Soo Lah^{*a}

^a Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919,

Korea

^b Pohang Acceleratory Laboratory, Pohang 37673, Korea

Experimental section

General procedures

All reagents were purchased from commercial sources and used without further purification. Powder X-ray diffraction (PXRD) data were recorded using a Bruker D2 Phaser automated diffractometer at room temperature, with a step size of $2\theta = 0.02^{\circ}$. Variable temperature ¹H nuclear magnetic resonance (NMR) spectra were recorded using a 400 MHz FT-NMR spectrometer at the UNIST Central Research Facilities. Thermogravimetric analysis (TGA) was performed using a STD Q-600 series instrument from TA Instruments at a heating rate of 10 °C min⁻¹ under flowing N₂. The sample was dried before the TGA measurement using flowing N₂ for 60 min. All the gas sorption isotherms were measured using a BELSORP-max (BEL Japan, Inc.) adsorption system employing a standard volumetric technique up to saturation pressure. The N₂ (purity of 99.999%) sorption isotherms were measured at 195 K.

Synthesis of the 3,3'-((3,4-dioxocyclobut-1-ene-1,2-diyl)bis(azanediyl))dibenzoic acid (H₂dbda) ligand

3,3'-((3,4-Dioxocyclobut-1-ene-1,2-diyl)bis(azanediyl))dibenzoic acid (H₂dbda) was synthesized according to the reported procedure with minor modifications.^{S1} 3-Aminobenzoic acid (5.76 g, 42.0 mmol), Zn(CF₃SO₃)₂ (1.45 g, 4.00 mmol), and 3,4-diethoxy-3-cyclobutene-1,2-dione (2.5 mL, 17 mmol) were added into toluene (190 mL) and *N*-methyl-2-pyrrolidone (10 mL). After refluxing at 100 °C for 24 h under N₂ atmosphere, a yellowish green precipitate was harvested by filtration and washed in boiling MeOH (90 mL) for 1 h. The yellowish green precipitate was then filtered and washed with MeOH (50 mL) again. After dissolving the precipitate (~ 110 mg) in DMA (20 mL) at 120 °C, MeOH (20 mL) was added to the solution. The solution, kept at -18 °C for 1 d, produced yellow precipitate and the yellow precipitate was removed from the solution by filtration. The addition of water (40 mL) to the filtrate yielded the yellowish pink product. The product was filtered, washed with MeOH (50 mL), and dried at 80 °C for 12 h. Yield: 4.29 g (72%). ¹H NMR (400 MHz, DMSO-d₆) [δ , ppm]:10.09 (s, 2H), 10.11 (s, 2H), 7.99 (s, 2H), 7.76 (d, *J* = 8.0 Hz, 2H), 7.64 (d, *J* = 8.0 Hz, 2H), 7.50 (t, *J* = 8.0 Hz, 2H). ¹³C NMR (100 MHz, DMSO-d₆) [δ , ppm]: 182.48, 167.31, 166.11, 139.27, 132.48, 130.14, 124.43, 123.08, 119.64. ESI-MS (m/z): [M]⁻ calc. for Hdbda⁻ ([C₁₈H₁₁N₂O₆]⁻): 351.0617; found: 351.0622.

Preparation of MOFs

[Cd(dbda)(bipy)]·2DMA·2H₂O (1). A mixture of H₂dbda (18 mg, 0.051 mmol), 4,4'bipyridine (bipy, 9.0 mg, 0.058 mmol) and Cd(NO₃)₂·4H₂O (17 mg, 0.055 mmol) was dissolved in DMA/water mixed solvent (15 mL, 2:1 volume ratio) in a 20 mL screw capped vial. The solution was placed in an oven at 70 °C for two weeks and produced colorless block-shaped crystals (1). After cooling the solution to ambient temperature, the crystals were quickly collected by filtration and air-dried. Yield: 27.2 mg (45%). The number of DMA and water molecules in **1** was determined based on the single crystal structure and/or the ¹H NMR spectrum of the crystals digested in DMSO-d₆/DCl mixed solvent.

[Cd(dbda)(bipy)]·1.74DMA (1a). Activated 1 (1a) was prepared by placing 1 in a vacuum at 20 °C for 24 h. The number of DMA molecules in 1a was determined based on the ¹H NMR spectrum of the crystals digested in DMSO-d₆/DCl mixed solvent.

[Cd(dbda)(bipy)]·DMA (2). Method A. Single crystals of 2 were prepared by heating 1 to 150 °C at a heating rate of 10 °C min⁻¹ under flowing N₂ and then aging for 1 h, followed by exposure to ambient conditions. Method B. 2 can also be prepared by heating 1 at 130 °C for

24 h under vacuum, and then exposing it to ambient conditions. The number of DMA molecules in **2** was determined based on the single crystal structure and/or the ¹H NMR spectrum of the crystals digested in DMSO-d₆/DCl mixed solvent.

[Cd(dbda)(bipy)]·0.83DMA (2a). Activated 2 (2a) was prepared by heating 1 at 130 °C for 24 h under vacuum. The number of DMA molecules in 2a was determined based on the ¹H NMR spectrum of the crystals digested in DMSO-d₆/DCl mixed solvent.

[Cd(dbda)(bipy)]·H₂O (3). Method A. Single crystals of 3 were prepared by heating 1 to 275 °C at a heating rate of 10 °C min⁻¹ under flowing N₂ and then aging for 1 h, followed by exposure to ambient conditions. The number of DMA molecules in 3 was determined based on the ¹H NMR spectrum of the MOF crystal digested in DMSO-d₆/DCl mixed solvent at ambient conditions. Method B. 3 can also be prepared by heating 1 at 180 °C for 24 h under vacuum, and then exposing it to ambient conditions.

[Cd(dbda)(bipy)] (3a). Activated 3 (3a) was prepared by heating 1 at 180 °C for 24 h under vacuum.

Crystallographic data collection and refinement of the structures

Single crystals of **1**, **2**, and **3** were coated with Paratone-N oil and the diffraction data were measured at 173 K with Mo K α radiation on an X-ray diffraction camera system using an imaging plate equipped with a graphite crystal incident beam monochromator. RapidAuto software^{S2} was used for data collection and data processing. The structures were solved by either the direct method or the charge flip method and were refined by the full-matrix least-squares calculation with the SHELX software package.^{S3}

1, [Cd(dbda)(bipy)]·2DMA·2H₂O. A colorless, block shaped crystal, 0.250 × 0.150 × 0.085 mm³ was used for data collection. Crystal data for C₃₆H₄₀N₆O₁₀Cd (fw = 829.14 g·mol⁻¹): triclinic, space group *P*-1, *a* = 10.759(2) Å, *b* = 11.638(2) Å, *c* = 16.132(3) Å, *a* = 97.95(3)°, β = 91.80(3)°, γ = 108.00(3)°, *V* = 1896.6(7) Å³, *Z* = 2, μ (λ = 0.71073 Å) = 0.639 mm⁻¹, 18,283 reflections were collected, of which 8,446 were unique (R_{int} = 0.0187). One Cd ion, dbda²⁻, one bipy, two DMA molecules, and two water molecules are observed in an asymmetric unit. All non-hydrogen atoms are refined anisotropically; the hydrogen atoms were assigned isotropic displacement coefficients, U(H) = 1.2U (C and N) and 1.5U (C_{methyl}), and their coordinates were allowed to ride on their respective atoms. The cyclobut-3-ene-1,2-dione group of the dbda ligand is statistically disordered and the geometries are restrained to be the same using SAME command. The hydrogen atoms of the water molecules are not included in the least-square refinement. Refinement of the structure converged at a final *R*1 = 0.0430 and *wR*2 = 0.1064 for 7,389 reflections with *I* > 2 σ (*I*); *R*1 = 0.0519 and *wR*2 = 0.1112 for all 8,446 reflections. The largest difference peak and hole were 1.372 and -0.994 e·Å⁻³, respectively.

2, [Cd(dbda)(bipy)]·DMA. A colorless, rod shaped crystal, $0.123 \times 0.054 \times 0.030 \text{ mm}^3$ was used for data collection. Crystal data for C₃₂H₂₇N₅O₇Cd (fw = 705.98 g·mol⁻¹): triclinic, space group *P*-1, *a* = 10.421(2) Å, *b* = 11.613(2) Å, *c* = 14.115(3) Å, *a* = 80.06(3)°, *β* = 75.45(3)°, $\gamma = 69.73(3)°$, $V = 1544.1(7) Å^3$, Z = 2, μ ($\lambda = 0.71073 Å$) = 0.763 mm⁻¹, 15,200 reflections were collected, of which 7,053 were unique ($R_{int} = 0.1434$). One Cd ion, one dbda²⁻, one bipy, and one DMA molecule are observed in an asymmetric unit. All non-hydrogen atoms are refined anisotropically; the hydrogen atoms were assigned isotropic displacement coefficients U(H) = 1.2U (C and N) and 1.5U (C_{methyl}), and their coordinates were allowed to ride on their respective atoms. Refinement of the structure converged at a final *R*1 = 0.1051 and *wR*2 = 0.1341 for 3,958 reflections with *I* > 2 σ (*I*); *R*1 = 0.1890 and *wR*2 = 0.1589 for all 7,053 reflections. The largest difference peak and hole were 0.774 and -0.582 e·Å⁻³, respectively.

3, [Cd(dbda)(bipy)]·H₂O. A pale yellow, plate-shaped crystal, $0.087 \times 0.055 \times 0.024 \text{ mm}^3$ was used for data collection. Crystal data for C₂₈H₂₀N₄O₇Cd (fw = 636.88 g·mol⁻¹): monoclinic, space group *P*-1, *a* = 8.574(2) Å, *b* = 10.835(2) Å, *c* = 15.149(3) Å, *a* = 99.67(3)°, β = 97.74(3)°, γ = 107.38(3)°, *V* = 1298.0(5) Å³, *Z* = 2, μ (λ = 0.71073 Å) = 0.897 mm⁻¹, 9,859 reflections were collected, of which 4,555 were unique (R_{int} = 0.2626). One Cd ion, one dbda²⁻, one bipy and one water molecule are observed in an asymmetric unit. All non-hydrogen atoms are refined anisotropically; the hydrogen atoms were assigned isotropic displacement coefficients U(H) = 1.2U (C and N), and their coordinates were allowed to ride on their respective atoms. Highly anisotropic displacement parameters of several ligand atoms are restrained using the ISOR command. The hydrogen atoms of the water molecule are not included in the least-square refinement. Refinement of the structure converged at a final *R*1 = 0.1972 and *wR*2 = 0.3528 for 2,079 reflections with *I* > 2 σ (*I*); *R*1 = 0.3168 and

wR2 = 0.4200 for all 4,555 reflections. The largest difference peak and hole were 2.036 and $-0.860 \text{ e} \cdot \text{Å}^{-3}$, respectively

A summary of the crystallographic data is provided in the Supplementary Tables S4–S6. CCDC 2061490–2061492 contains the supplementary crystallographic data for **1**, **2**, and **3**. The data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK.

Variable temperature PXRD

Variable temperature PXRD (VT-PXRD) patterns were recorded at the BL2D SMC beamline of the Pohang Accelerator Laboratory, Korea. Crystalline samples were ground in an agate mortar and packed in a capillary tube (0.3 mm diameter). Debye–Scherrer diffraction data were collected on a Rayonix MX225HS CCD detector with a fixed wavelength ($\lambda = 1.00000$ Å) and an exposure of 30 s. For in situ heating, the sample tube was attached to a custombuilt housing equipped with a vacuum line and temperature-controlled stream of nitrogen gas. It was allowed for at least 5 min at the designated temperature before recording the diffraction patterns. The PAL BL2D-SMDC program^{S4} was used for data collection, and the Fit2D program^{S5} was used to convert the two-dimensional (2D) to one-dimensional (1D) patterns.

2D MOF	group pair	atom pair	distance	number and type of interactions	
1	phenyl…phenyl	C2…C12	3.423(1)	two π - π interactions	
2	phenyl…squaramide	C10···C17	3.386(1)	two π - π interactions	
3	nhenvlsquaramide	C5…C18	3.236(1)	two π - π interactions	
	phonyi squarannae	C6…C18	3.371(1)		
	phenyl…pyridyl	C13…C21	3.367(1)		
		C13…C25	3.495(1)	one π - π interaction	
		C13…C25	3.411(1)		
	nhanyi nhanyi	C13····O6	3.271(1)	one CH π interaction	
	phenyr…phenyr	С13-Н13Об	2.575(1)		

Table S1 π - π stacking, CH- π interactions, and close contacts (Å) in 1, 2, and 3.^{S6}

2D MOF	layer pair	atom pair	d(D-H)	$d(H \cdots A)$	$d(D \cdots A)$	<(DHA)
	within 1D	N1–H1····O1D	0.88	2.02	2.888(5)	168.9
1	chain	N2-H2···O1D	0.88	2.00	2.864(5)	168.3
	between the	O1W– H1W…O2#1	0.85(2)	2.14(3)	2.962(5)	162(8)
	lavers	O1W…O2D#2			3.113(2)	
	luyers	O1W…O2D#3			3.204(2)	
	between the next adjacent 2D layers	O2W…O51#2			2.84(3)	
		O2W…O61#4			2.64(13)	
		O2W…O52#2			3.04(4)	
		O2W…O62#4			2.75(11)	
2	within 1D	N1-H1…O1D#5	0.86	1.99	2.827(1)	162.9
2	chain	N2-H2…O1D#5	0.86	2.12	2.955(1)	162.4
3	between the adjacent 2D layers	N1–H1…O1S	0.88	2.03	2.90(3)	168.8
		N2-H2O1S	0.88	2.14	2.96(3)	155.8
		O1S-H1…O5#6	0.84(2)	2.08(16)	2.86(3)	151(35)
		O1S-H1…O1#7	0.84(2)	1.90(7)	2.73(3)	171(39)

Table S2 Hydrogen bonding interactions (Å and $^{\circ}$) of 1, 2, and 3.^{S7}

#1 1-x,1-y,1-z; #2 x,1+y,z; #3 1-x,1-y,2-z; #4 -x,1-y,1-z; #5 x,-1+y,1+z; #6 x+1,y,z; #7 - x+1,-y,-z+1

Table S3 Torsional angles (°) of dbda in 1, 2 and 3.

2D MOF	φ1	φ2	φ3	φ4	φ5	φ6
1	1.803	-177.0	179.6	10.19	173.9	-177.0
2	40.31	153.0	165.0	-9.6	-178.1	-162.5
3	41.13	-2.6	169.7	24.24	-62.1	177.9

 Table S4 Crystal data and structure refinement for 1.

Empirical formula	$C_{36}H_{40}N_6O_{10}Cd$	$C_{36}H_{40}N_6O_{10}Cd$		
Formula weight	829.14	829.14		
Temperature	173(2) K			
Wavelength	0.71073 Å	0.71073 Å		
Crystal system	Triclinic			
Space group	P-1			
Unit cell dimensions	a = 10.759(2) Å	$\alpha = 97.95(3)^{\circ}$		
	b = 11.638(2) Å	$\beta = 91.80(3)^{\circ}$		
	c = 16.132(3) Å	$\gamma = 108.00(3)^{\circ}$		
Volume	1896.6(7) Å ³			
Z	2			
Density (calculated)	1.452 mg/m ³	1.452 mg/m ³		
Absorption coefficient	0.639 mm ⁻¹	0.639 mm ⁻¹		
F(000)	862	862		
Crystal size	0.250 imes 0.150 imes 0.08	$0.250\times0.150\times0.085\ mm^3$		
Theta range for data collection	3.119 to 27.448°.	3.119 to 27.448°.		
Index ranges	-13<=h<=12, -15<=	k<=15, -20<=l<=20		
Reflections collected	18283	18283		
Independent reflections	8446 [R(int) = 0.018	8446 [R(int) = 0.0187]		
Completeness to theta = 25.242°	98.6 %	98.6 %		
Refinement method	Full-matrix least-squ	Full-matrix least-squares on F ²		
Data / restraints / parameters	8446 / 30 / 520	8446 / 30 / 520		
Goodness-of-fit on F ²	1.029	1.029		
Final R indices [I>2sigma(I)]	R1 = 0.0430, wR2 =	R1 = 0.0430, wR2 = 0.1064		
R indices (all data)	R1 = 0.0519, wR2 =	R1 = 0.0519, wR2 = 0.1112		
Extinction coefficient	n/a	n/a		
Largest diff. peak and hole	1.372 and -0.994 e.Å	1.372 and -0.994 e.Å ⁻³		

 Table S5 Crystal data and structure refinement for 2.

Empirical formula	C32H27N5O7Cd	C ₃₂ H ₂₇ N ₅ O ₇ Cd		
Formula weight	705.98			
Temperature	173(2) K			
Wavelength	0.71073 Å			
Crystal system	Triclinic			
Space group	<i>P</i> -1			
Unit cell dimensions	a = 10.421(2) Å	$\alpha = 80.06(3)^{\circ}$		
	b = 11.613(2) Å	$\beta = 75.45(3)^{\circ}$		
	c = 14.115(3) Å	$\gamma = 69.73(3)^{\circ}$		
Volume	1544.1(7) Å ³			
Z	2			
Density (calculated)	1.518 mg/m ³			
Absorption coefficient	0.763 mm ⁻¹			
F(000)	716	716		
Crystal size	0.123 imes 0.054 imes 0.03	$0.123\times0.054\times0.030\ mm^3$		
Theta range for data collection	2.289 to 27.484°.	2.289 to 27.484°.		
Index ranges	-13<=h<=13, -15<=1	-13<=h<=13, -15<=k<=14, -17<=l<=18		
Reflections collected	15200	15200		
Independent reflections	7053 [R(int) = 0.143	7053 [R(int) = 0.1434]		
Completeness to theta = 25.242°	99.8 %	99.8 %		
Absorption correction	Semi-empirical from	Semi-empirical from equivalents		
Max. and min. transmission	0.970 and 0.331	0.970 and 0.331		
Refinement method	Full-matrix least-squ	Full-matrix least-squares on F ²		
Data / restraints / parameters	7053 / 0 / 406	7053 / 0 / 406		
Goodness-of-fit on F ²	1.059	1.059		
Final R indices [I>2sigma(I)]	R1 = 0.1051, wR2 =	R1 = 0.1051, wR2 = 0.1341		
R indices (all data)	R1 = 0.1890, wR2 =	R1 = 0.1890, wR2 = 0.1589		
xtinction coefficient n/a				
Largest diff. peak and hole	st diff. peak and hole 0.774 and $-0.582 \text{ e} \cdot \text{\AA}^{-3}$			

Table S6 Crystal data and structure refinement for **3**.

Empirical formula	$C_{28}H_{20}N_4O_7Cd$	$C_{28}H_{20}N_4O_7Cd$		
Formula weight	636.88	636.88		
Temperature	173(2) K	173(2) K		
Wavelength	0.71073 Å	0.71073 Å		
Crystal system	Triclinic			
Space group	<i>P</i> -1			
Unit cell dimensions	a = 8.5738(17) Å	$\alpha = 99.67(3)^{\circ}$		
	b = 10.835(2) Å	$\beta = 97.74(3)^{\circ}$		
	c = 15.149(3) Å	$\gamma = 107.38(3)^{\circ}$		
Volume	1298.0(5) Å ³			
Z	2			
Density (calculated)	1.630 mg/m^3			
Absorption coefficient	0.897 mm ⁻¹			
F(000)	640	640		
Crystal size	0.087 imes 0.055 imes 0.02	$0.087\times0.055\times0.024\ mm^3$		
Theta range for data collection	2.019 to 24.999°.	2.019 to 24.999°.		
Index ranges	-10<=h<=10, -12<=	-10<=h<=10, -12<=k<=12, -17<=l<=17		
Reflections collected	9859			
Independent reflections	4555 [R(int) = 0.262	4555 [R(int) = 0.2626]		
Completeness to theta = 24.999°	99.8 %	99.8 %		
Absorption correction	Semi-empirical from	Semi-empirical from equivalents		
Max. and min. transmission	0.976 and 0.012	0.976 and 0.012		
Refinement method	Full-matrix least-squ	Full-matrix least-squares on F ²		
Data / restraints / parameters	4555 / 44 / 367	4555 / 44 / 367		
Goodness-of-fit on F ²	1.137			
Final R indices [I>2sigma(I)]	R1 = 0.1972, wR2 =	R1 = 0.1972, wR2 = 0.3528		
R indices (all data)	R1 = 0.3168, wR2 =	R1 = 0.3168, wR2 = 0.4200		
Extinction coefficient	n/a	n/a		
Largest diff. peak and hole	2.036 and -0.860 e-	2.036 and -0.860 e⋅Å ⁻³		

Fig. S1 (Potential) hydrogen bonding interactions between the adjacent interdigitated layers of 1. OH···O hydrogen bonding and O···O close contacts are represented by pink and purple dotted lines, respectively. The minor part of the statistically disordered squaramide residue is omitted for clarity.

Fig. S2 (Potential) hydrogen bonding interactions between the next adjacent interdigitated layers of 1. $O \cdots O$ close contacts are represented by purple dotted lines. The minor part of the statistically disordered squaramide residue is represented in partial transparency.

Fig. S3 π - π stacking interactions between 2D layers of (a, b) 1 and (c, d) 2 viewed approximately along the stacking direction and perpendicular to the stacking direction, respectively. The minor part of the statistically disordered squaramide residue is omitted for clarity.

Fig. S4 Comparison of the observed and simulated PXRD pattern of 1.

Fig. S5 TGA of 1 at a heating rate of 10 °C min⁻¹ under flowing N_2 .

Fig. S6 Comparison of the PXRD patterns of 2 obtained by aging 1 either at 150 °C for 1 h under flowing N_2 or 130 °C for 1 d under vacuum.

Fig. S7 1 H NMR spectra of (a) **1** and (b) **2**.

Fig. S8 2D layers of (a) **1**, (b) **2**, and (c) **3** with **sql** net topology and inter-cluster distances and angles, where the parallelograms consist of four dinuclear $Cd_2(COO)_4$ secondary building units (pink) doubly interconnected by both dbda ligands and two bipy linkers.

Fig. S9 Conformations of dbda ligand in (a, b) **1**, (c, d) **2**, and (e, f) **3** viewed approximately perpendicular to and along one of the phenyl groups of the ligand.

Fig. S10 Comparison of the PXRD patterns of 3 obtained by aging 1 either at 275 °C for 1 h under flowing N_2 or 180 °C for 1 d under vacuum.

Fig. S11 ¹H NMR spectrum of **3**.

Fig. S12 Hydrogen bonding interactions involving a water molecule entrapped in the framework of **3**. OH (or NH)····O hydrogen bonding contacts are represented by pink dotted lines.

Fig. S13 π - π stacking interaction between phenyl and squaramide groups of 3 viewed approximately (a) along the stacking directions and (b) perpendicular to the stacking directions. The π - π stacking interaction between phenyl and pyridyl groups of 3 viewed approximately (c) along the stacking directions and (d) perpendicular to the stacking directions. The CH- π interaction between phenyl groups of 3 in (e) ball-and-stick and (f) CPK models.

Fig. S14 N_2 adsorption isotherms (filled squares) and desorption isotherms (open squares) of 1a, 2a, and 3a at 77 K.

Fig. S15 CO₂ adsorption isotherms (filled circles) and desorption isotherms (open circles) of **1a**, **2a**, and **3a** at (a) 298 K and (b) 323 K.

References

- S1. M. Jiang, P. Li, P. Wu, F. Zhang, X. Tian, C. Deng and J. Wang, A squaramide-based metal–organic framework as a luminescent sensor for the detection of lactose in aqueous solution and in milk, *Chem. Commun.*, 2018, 54, 9131–9134.
- S2. Rapid Auto software, R-Axis series, Cat. No. 9220B101, Rigaku Corporation.
- S3. SHELX program: Crystal structure refinement with *SHELXL*, G. M. Sheldrick, *Acta Crystallogr. C*, 2015, **71**, 3–8.
- S4. J. W. Shin, K. Eom and D. Moon, BL2D-SMC, the supramolecular crystallography beamline at the Pohang Light Source II, Korea, J. Synchrotron Radiat., 2016, 23, 369– 373.
- S5. A. Hammersley, Fit2D Program; ESRF: Grenoble, France
- S6. R. Thakuria, N. K. Nath and B. K. Saha, The nature and applications of π - π interactions: a perspective, *Cryst. Growth Des.*, 2019, **19**, 523–528.
- S7. E. Arunan, G. R. Desiraju, R. A. Klein, J. Sadlej, S. Scheiner, I. Alkorta, D. C. Clary, R. H. Crabtree, J. J. Dannenberg, P. Hobza, H. G. Kjaergaard, A. C. Legon, B. Mennucci and D. J. Nesbitt, Defining the hydrogen bond: an account, (IUPAC technical report), *Pure Appl. Chem.*, 2011, 83, 1619–1636.