Supplementary Information (SI)

The alumination mechanism of porous silica materials and properties of derived ion exchangers and acid catalysts

Zheng Li,^[a] Michael Benz,^[a] Carolin Rieg,^[a] Daniel Dittmann,^[a] Ann-Katrin Beurer,^[a] Dorothea Häussermann,^[a] Bjørnar Arstad,^[b] and Michael Dyballa^{[a]*}

- [a] Institute of Technical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
- [b] SINTEF Industry, Forskningsveien 1, 0373 Oslo, Norway

*Corresponding author, E-mail: michael.dyballa@itc.uni-stuttgart.de

Items	Pages
Figure S1 +S2	2
Figure S3 +S4	3
Table S1 + Table S2	4
Figure S5	5
Figure S6	6
Figure S7	7
Figure S8	8
Figure S9 +S10	9
Figure S11 +S12	10
Figure S13	11
Figure S14	12
Figure S15	13

Figure S1. Small-angle X-ray powder diffraction patterns of the mesoporous SBA-15 materials under study.

Figure S2. Small-angle X-ray powder diffraction patterns of the mesoporous SBA-16 materials under study.

Figure S3. Wide-angle X-ray powder diffraction patterns of the microporous DeA-Y zeolites under study.

Figure S4. Small-angle X-ray powder diffraction patterns of ion exchanged forms of mesoporous [AI]SBA-15-ht under study.

	m(Substrate)	m(NaAlO ₂)	Si/Al	Si/Al
Product	[g]	[g]	(raw)	(modified)
Na-[AI]SBA-15-low	3	0.15	27	29
Na-[AI]SBA-15-high	1	0.12	11	13
Na-[Al]SBA-15-ht	1	0.12	11	12
Na-[Al]SBA-16-low	2.2	0.13	23	29
Na-[AI]SBA-16-high	2.2	0.26	11	20
Na-[Al]SBA-16-ht	2.2	0.26	11	12
Na-[Al]DeaY-ht	2.2	0.26	11	21

Table S1: Si/Al ratio of synthesis batch (raw) and of modified materials (modified).

Table S2: Pore diameters	of SBA-15 determined by the BJH-method on the
adsorption ((left) and desorption (right) branch.

Material	Mesopore diameter [nm] ^{ads}	Mesopore diameter [nm] ^{des}
SBA-15	6.8	5.7
Na-[AI]SBA-15-low	6.7	5.4
H-[AI]SBA-15-low	6.6	5.4
Na-[Al]SBA-15-high	6.7	5.5
H-[AI]SBA-15-high	6.7	5.4
Na-[Al]SBA-15-ht	6.7	5.4
H-[AI]SBA-15-ht	6.7	5.5

Figure S5: Pore size distribution according to the BJH method for SBA-15, Na-[AI]SBA-15-ht, and H-[AI]SBA-15-ht (adsorption branch).

Figure S6: Pore size distribution according to the BJH method for SBA-16, Na-[AI]SBA-16-ht, and H-[AI]SBA-16-ht.

Figure S7: Pore size distribution according to the BJH method for DeA-Y, Na-[AI]DeA-Y-ht, and H-[AI]DeA-Y -ht.

Figure S8. ²⁷AI MAS NMR spectra of the as-, Na-, NH₄-, K-, and H-forms of material [AI]SBA-15-ht.

Figure S9: SEM pictures of all mesoporous SBA-15 forms.

Figure S10: SEM pictures of all mesoporous SBA-16 forms.

Figure S11: SEM pictures of all microporous DeA-Y forms.

Figure S12: TEM-pictures of mesoporous SBA-16 in all steps of the synthesis procedure.

Figure S13. ²³Na MAS NMR spectra of the precursor NaAlO₂ and of fully hydrated Na-[Al]SBA-15-ht.

Figure S14: ¹H MAS NMR spectra before (a) and after (b) loadings with ammonia (NH₃) on activated Na-form materials. No peaks at 6.5 ppm due to the formation of NH_4^+ are observed and thus no Brønsted acid sites are present.

Figure S15: ¹H MAS NMR spectra (from top to bottom) before (a) and after (b) loadings with ammonia (NH₃) as well as the difference spectra (c). A comparison of materials with ammonia removal at different temperatures gave acid site densities of 0.12 mmol/g when the activation was performed under standard conditions in vacuum at 673 K and 0.10 mmol/g when the activation was performed in vacuum at 623 K.