Electronic Supplementary Information

An effective strategy for preparing nickel nanoparticles encapsulated in polymer matrixderived carbon shell with high catalytic activity and long-term durability toward urea electro-oxidation

Quang Thien Luong^{a,†}, Sun Young Kang^{b,†}, Dohyeon Lee^a, Jihyeok Song^a, Mohanraju Karuppannan^a, Yong-Hun Cho^{c,*}, and Oh Joong Kwon^{a,*}

^aDepartment of Energy and Chemical Engineering and Innovation Centre for Chemical Engineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea

^bSchool of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea

^cDepartment of Chemical Engineering, Kangwon National University, Samcheok 25913, Republic of Korea

Table S1. Mass activity, electrochemical surface area (ECSA), and specific activity of different Ni@nCS/CNF catalysts

Catalyst	Mass activity ⁱ	ECSA ⁱⁱ	Specific activity ⁱⁱⁱ
	(A/g)	(m ² /g)	(A/m ²)
Ni@2CS/CNF	1561.2	161.1	9.69
Ni@1.5CS/CNF	1470	159.4	9.22
Ni@CS/CNF	1415.7	207	6.84
Ni@0.75CS/CNF	1219.7	147.3	8.28
Ni@0.5CS/CNF	578.6	93.2	6.21
Ni@0.25CS/CNF	472.9	56.2	8.41

ⁱ Mass activity was calculated by dividing the anodic peak current density by nickel loading amount. ⁱⁱ ECSA was estimated following the equation: $ECSA = Q/(m \times 0.257)$, where Q is the charge relating to Ni³⁺/Ni²⁺ conversion; m is nickel loading amount and the value 0.257 mC cm⁻² is the charge required for the formation of a monolayer of Ni²⁺. Q was calculated by integrating the reduction peaks from CV curves measured in the absence of urea (This method for calculating the ECSA has been reported in previous studies¹⁻³).

iii Specific activity was calculated by dividing the mass activity by ECSA.

Figure S1. (a) TGA profiles of different Ni@nCS/CNF catalysts before acid treatment and (b) XRD patterns of different Ni@nCS/CNF catalysts before acid treatment.

Figure S2. XRD pattern of CNF.

Figure S3. FE-SEM images of (a) Ni@2CS/CNF, (b) Ni@1.5CS/CNF, (c) Ni@CS/CNF, (d) Ni@0.75CS/CNF, (e) Ni@0.5CS/CNF and (f) Ni@0.25CS/CNF

Figure S4. HR-TEM images of (a) Ni@2CS/CNF, (b) Ni@1.5CS/CNF, (c) Ni@CS/CNF, (d) Ni@0.75CS/CNF, (e) Ni@0.5CS/CNF and (f) Ni@0.25CS/CNF at a scale of 10 nm. The white arrows indicate the carbon shell.

Figure S5. (a) Survey scan XPS spectra of Ni@1.5CS/CNF, (b) Ni2p XPS spectra of Ni@1.5CS/CNF, (c) Survey scan XPS spectra of Ni@CS/CNF and (d) Ni2p XPS spectra of Ni@CS/CNF.

Figure S6. Cyclic voltammograms in activation step of (a) Ni@2CS/CNF, (b) Ni@1.5CS/CNF, (c) Ni@CS/CNF, (d) Ni@0.75CS/CNF, (e) Ni@0.5CS/CNF and (f) Ni@0.25CS/CNF.

Figure S7. HR-TEM images of Ni@2CS/CNF (a) before and (b) after activation at a scale of 10 nm. The insets show HR-TEM images at a scale of 50 nm.

Figure S8. Cyclic voltammograms of the UOR on Ni@2CS/CNF at different urea concentration in (a) 1 M KOH, (b) 0.5 M KOH, (c) 3 M KOH and (d) 5 M KOH, and (f) Plot of anodic peak current density vs. urea concentration in different KOH electrolyte.

Figure S9. HR-TEM images of Ni@2CS/CNF (a) before and (b) after durability test at a scale of 10 nm. The insets show HR-TEM images at a scale of 50 nm.

Figure S10. (a) Cyclic voltammograms of the UOR on Ni@2CS/CNF catalysts synthesized at different temperature in 0.3 M/1 M KOH and (b) Nyquist plots of Ni@2CS/CNF catalysts synthesized at different temperature in 0.3 M/1 M KOH.

REFERENCE

- 1 P. Basumatary, D. Konwar and Y. S. Yoon, *Electrochim. Acta*, 2018, 261, 78-85.
- 2 S. Wang, X. Yang, Z. Liu, D. Yang and L. Feng, *Nanoscale*, 2020, **12**, 10827–10833.
- 3 K. Ye, H. Zhang, L. Zhao, X. Huang, K. Cheng, G. Wang and D. Cao, *New J. Chem.*, 2016, 40, 8673–8680.